Conformable Hybrid Systems for Implantable Bioelectronic Interfaces

被引:87
作者
Fallegger, Florian [1 ]
Schiavone, Giuseppe [1 ]
Lacour, Stephanie P. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Ctr Neuroprosthet, Inst Bioengn, Inst Microengn,Lab Soft Bioelect Interfaces,Berta, CH-1202 Geneva, Switzerland
基金
欧盟地平线“2020”;
关键词
bioelectronics; electronic functions; hybrid integration; mechanical design; microfabrication; SPINAL-CORD STIMULATION; STRETCHABLE ELECTRONICS; RETINAL PROSTHESIS; OPTICAL CONTROL; NERVOUS-SYSTEM; HIGH-DENSITY; THIN-FILMS; BRAIN; DESIGN; OPTOELECTRONICS;
D O I
10.1002/adma.201903904
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Conformable bioelectronic systems are promising tools that may aid the understanding of diseases, alleviate pathological symptoms such as chronic pain, heart arrhythmia, and dysfunctions, and assist in reversing conditions such as deafness, blindness, and paralysis. Combining reduced invasiveness with advanced electronic functions, hybrid bioelectronic systems have evolved tremendously in the last decade, pushed by progress in materials science, micro- and nanofabrication, system assembly and packaging, and biomedical engineering. Hybrid integration refers here to a technological approach to embed within mechanically compliant carrier substrates electronic components and circuits prepared with traditional electronic materials. This combination leverages mechanical and electronic performance of polymer substrates and device materials, respectively, and offers many opportunities for man-made systems to communicate with the body with unmet precision. However, trade-offs between materials selection, manufacturing processes, resolution, electrical function, mechanical integrity, biointegration, and reliability should be considered. Herein, prominent trends in manufacturing conformable hybrid systems are analyzed and key design, function, and validation principles are outlined together with the remaining challenges to produce reliable conformable, hybrid bioelectronic systems.
引用
收藏
页数:17
相关论文
共 154 条
[1]   GFP-specific CD8 T cells enable targeted cell depletion and visualization of T-cell interactions [J].
Agudo, Judith ;
Ruzo, Albert ;
Park, Eun Sook ;
Sweeney, Robert ;
Kana, Veronika ;
Wu, Meng ;
Zhao, Yong ;
Egli, Dieter ;
Merad, Miriam ;
Brown, Brian D. .
NATURE BIOTECHNOLOGY, 2015, 33 (12) :1287-+
[2]   Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials [J].
Ahn, Jong-Hyun ;
Kim, Hoon-Sik ;
Lee, Keon Jae ;
Jeon, Seokwoo ;
Kang, Seong Jun ;
Sun, Yugang ;
Nuzzo, Ralph G. ;
Rogers, John A. .
SCIENCE, 2006, 314 (5806) :1754-1757
[3]   Welding methods for joining thermoplastic polymers for the hermetic enclosure of medical devices [J].
Amanat, Negin ;
James, Natalie L. ;
McKenzie, David R. .
MEDICAL ENGINEERING & PHYSICS, 2010, 32 (07) :690-699
[4]  
[Anonymous], 2018, 1099312018EN TCIT IS, P28
[5]   Speech synthesis from neural decoding of spoken sentences [J].
Anumanchipalli, Gopala K. ;
Chartier, Josh ;
Chang, Edward F. .
NATURE, 2019, 568 (7753) :493-+
[6]   An optical neural interface:: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology [J].
Aravanis, Alexander M. ;
Wang, Li-Ping ;
Zhang, Feng ;
Meltzer, Leslie A. ;
Mogri, Murtaza Z. ;
Schneider, M. Bret ;
Deisseroth, Karl .
JOURNAL OF NEURAL ENGINEERING, 2007, 4 (03) :S143-S156
[7]   Mapping brain activity with flexible graphene micro-transistors [J].
Blaschke, Benno M. ;
Tort-Colet, Nuria ;
Guimera-Brunet, Anton ;
Weinert, Julia ;
Rousseau, Lionel ;
Heimann, Axel ;
Drieschner, Simon ;
Kempski, Oliver ;
Villa, Rosa ;
Sanchez-Vives, Maria V. ;
Garrido, Jose A. .
2D MATERIALS, 2017, 4 (02)
[8]   Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer [J].
Bowden, N ;
Brittain, S ;
Evans, AG ;
Hutchinson, JW ;
Whitesides, GM .
NATURE, 1998, 393 (6681) :146-149
[9]   Millisecond-timescale, genetically targeted optical control of neural activity [J].
Boyden, ES ;
Zhang, F ;
Bamberg, E ;
Nagel, G ;
Deisseroth, K .
NATURE NEUROSCIENCE, 2005, 8 (09) :1263-1268
[10]  
British Standard Organization, 2010, 45502232010 BS EN BR