Preliminary high-throughput phenotyping analysis in grapevines under drought

被引:4
作者
Briglia, Nunzio [1 ]
Nuzzo, Vitale [1 ]
Petrozza, Angelo [2 ]
Summerer, Stephan [2 ]
Cellini, Francesco [2 ]
Montanaro, Giuseppe [1 ]
机构
[1] Univ Basilicata, Dipartimento Culture Europee & Mediterraneo, Potenza, Italy
[2] ALSIA Ctr Ric Metapontum Agrobios, SS Jonica 106,Km 448,2, I-75010 Metaponto, MT, Italy
来源
CO.NA.VI. 2018 - 7 CONVEGNO NAZIONALE DI VITICOLTURA | 2019年 / 13卷
关键词
VITIS-VINIFERA L; WATER; STRESS;
D O I
10.1051/bioconf/20191302003
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
This study reports correlative information between leaf water potential (Psi), total leaf area of droughted grapevines (Vitis vinifera L.) and non-destructive image analysis techniques. Four groups of 20 potted vines each were subjected to various irrigation treatments restoring 100% (control), 75%, 50% and 25% of daily water consumption within a 22-day period of drought imposition. Leaf gas exchanges (Li-Cor 6400), Psi (Scholander chamber), fluorescence (PAM - 2500), RGB and NIR (Scanalyzer 3D system, LerrmaTec GmbH phenotyping platform) data were collected before and at the end of drought imposition. Values of Psi in severely stressed vines (25%) reached -1.2 MPa pre-dawn, in turn stomata' conductance and photosynthesis reached values as low as approx. 0.02 mol H2O m(-2) s(-1) and 1.0 mu mol CO2 m(-2) s(-1), respectively. The high-throughput analysis preliminarily revealed a correlation between Psi(stem) and NIR Color Class (R-2=0.80), and that plant leaf area might be accurately estimated through imagine analysis (R-2=0.90).
引用
收藏
页数:4
相关论文
共 50 条
[41]   High-throughput method for ear phenotyping and kernel weight estimation in maize using ear digital imaging [J].
Makanza, R. ;
Zaman-Allah, M. ;
Cairns, J. E. ;
Eyre, J. ;
Burgueno, J. ;
Pacheco, Angela ;
Diepenbrock, C. ;
Magorokosho, C. ;
Tarekegne, A. ;
Olsen, M. ;
Prasanna, B. M. .
PLANT METHODS, 2018, 14
[42]   Multi-scale high-throughput phenotyping of apple architectural and functional traits in orchard reveals genotypic variability under contrasted watering regimes [J].
Coupel-Ledru, Aude ;
Pallas, Benoit ;
Delalande, Magalie ;
Boudon, Frederic ;
Carrie, Emma ;
Martinez, Sebastien ;
Regnard, Jean-Luc ;
Costes, Evelyne .
HORTICULTURE RESEARCH, 2019, 6
[43]   Automated hyperspectral vegetation index derivation using a hyperparameter optimisation framework for high-throughput plant phenotyping [J].
Koh, Joshua C. O. ;
Banerjee, Bikram P. ;
Spangenberg, German ;
Kant, Surya .
NEW PHYTOLOGIST, 2022, 233 (06) :2659-2670
[44]   High-Throughput Phenotyping and Random Regression Models Reveal Temporal Genetic Control of Soybean Biomass Production [J].
Moreira, Fabiana Freitas ;
de Oliveira, Hinayah Rojas ;
Lopez, Miguel Angel ;
Abughali, Bilal Jamal ;
Gomes, Guilherme ;
Cherkauer, Keith Aric ;
Brito, Luiz Fernando ;
Rainey, Katy Martin .
FRONTIERS IN PLANT SCIENCE, 2021, 12
[45]   High-Throughput Plant Phenotyping for Developing Novel Biostimulants: From Lab to Field or From Field to Lab? [J].
Rouphael, Youssef ;
Spichal, Lukas ;
Panzarova, Klara ;
Casa, Raffaele ;
Colla, Giuseppe .
FRONTIERS IN PLANT SCIENCE, 2018, 9
[46]   Investigating the effects of elevated temperature on salinity tolerance traits in grapevine rootstocks using high-throughput phenotyping [J].
Dunlevy, J. D. ;
Blackmore, D. H. ;
Betts, A. ;
Jewell, N. ;
Brien, C. ;
Berger, B. ;
Walker, R. R. ;
Edwards, E. J. ;
Walker, A. R. .
AUSTRALIAN JOURNAL OF GRAPE AND WINE RESEARCH, 2022, 28 (02) :276-291
[47]   Genetic dissection of seasonal vegetation index dynamics in maize through aerial based high-throughput phenotyping [J].
Wang, Jinyu ;
Li, Xianran ;
Guo, Tingting ;
Dzievit, Matthew J. ;
Yu, Xiaoqing ;
Liu, Peng ;
Price, Kevin P. ;
Yu, Jianming .
PLANT GENOME, 2021, 14 (03)
[48]   High-throughput phenotyping for non-destructive estimation of soybean fresh biomass using a machine learning model and temporal UAV data [J].
Randelovic, Predrag ;
Dordevic, Vuk ;
Miladinovic, Jegor ;
Prodanovic, Slaven ;
Ceran, Marina ;
Vollmann, Johann .
PLANT METHODS, 2023, 19 (01)
[49]   Gene expression profiling of soybean leaves and roots under salt, saline-alkali and drought stress by high-throughput Illumina sequencing [J].
Fan, Xiu-Duo ;
Wang, Jia-Qi ;
Yang, Na ;
Dong, Yuan-Yuan ;
Liu, Liang ;
Wang, Fa-Wei ;
Wang, Nan ;
Chen, Huan ;
Liu, Wei-Can ;
Sun, Ye-Peng ;
Wu, Jin-Yu ;
Li, Hai-Yan .
GENE, 2013, 512 (02) :392-402
[50]   Identification of drought-responsive microRNAs and their targets in Ammopiptanthus mongolicus by using high-throughput sequencing [J].
Gao, Fei ;
Wang, Ning ;
Li, Huayun ;
Liu, Jisheng ;
Fu, Chenxi ;
Xiao, Zihua ;
Wei, Chunxiang ;
Lu, Xiaoduo ;
Feng, Jinchao ;
Zhou, Yijun .
SCIENTIFIC REPORTS, 2016, 6