Reactive Oxygen Species-Induced Aggregation of Nanozymes for Neuron Injury

被引:39
作者
He, Hua [1 ,2 ]
Shi, Xinjian [1 ,2 ]
Wang, Junying [3 ]
Wang, Xiaojuan [1 ,2 ]
Wang, Qian [1 ,2 ]
Yu, Daoyong [1 ,2 ]
Ge, Baosheng [1 ,2 ]
Zhang, Xiaodong [3 ]
Huang, Fang [1 ,2 ]
机构
[1] China Univ Petr East China, State Key Lab Heavy Oil Proc, Qingdao 266580, Peoples R China
[2] China Univ Petr East China, Coll Chem Engn, Qingdao 266580, Peoples R China
[3] Tianjin Univ, Sch Sci, Dept Phys, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
nanozyme; catalytic activity; ROS-induced aggregation; organ-targeting; traumatic brain injury; PEROXIDASE-LIKE ACTIVITY; HYDROGEN-PEROXIDE; NANOPARTICLES; BRAIN; GOLD; ENZYME; NEUROINFLAMMATION; MECHANISMS; THERAPIES; CHEMISTRY;
D O I
10.1021/acsami.9b17509
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nanozymes show excellent enzyme activity and robust catalytic properties, but the targeting capability to disease organs is limited because of lack of specificity. Herein, we developed an ultrasmall (similar to 3 nm) organic nanozyme that can gradually aggregate under a reactive oxygen species (ROS)-rich environment via a spontaneous reaction, namely, ROS-induced aggregation. The size of nanozymes is 75 and 100 times higher than the original size under (OH)-O-center dot and H2O2 environments without losing enzyme activity. In vitro experiments confirm that nanozymes prefer to aggregate in mitochondria under ROS-rich conditions. Importantly, the nanozymes show in situ ROS-induced aggregation in the brain, similar to 9 times higher uptake than ordinary nanozymes, indicating their potential for treating ROS-related diseases in the central nervous system.
引用
收藏
页码:209 / 216
页数:8
相关论文
共 44 条
[1]  
ANDERSON ME, 1985, METHOD ENZYMOL, V113, P548
[2]   Antioxidant Poly(lactic-co-glycolic) Acid Nanoparticles Made with α-Tocopherol-Ascorbic Acid Surfactant [J].
Astete, Carlos E. ;
Dolliver, Debra ;
Whaley, Meocha ;
Khachatryan, Lavrent ;
Sabliov, Cristina M. .
ACS NANO, 2011, 5 (12) :9313-9325
[3]   Antioxidant Carbon Particles Improve Cerebrovascular Dysfunction Following Traumatic Brain Injury [J].
Bitner, Brittany R. ;
Marcano, Daniela C. ;
Berlin, Jacob M. ;
Fabian, Roderic H. ;
Cherian, Leela ;
Culver, James C. ;
Dickinson, Mary E. ;
Robertson, Claudia S. ;
Pautler, Robia G. ;
Kent, Thomas A. ;
Tour, James M. .
ACS NANO, 2012, 6 (09) :8007-8014
[4]   A selective, cell-permeable optical probe for hydrogen peroxide in living cells [J].
Chang, MCY ;
Pralle, A ;
Isacoff, EY ;
Chang, CJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (47) :15392-15393
[5]   Reactive Oxygen Species-Activated Nanoprodrug of Ibuprofen for Targeting Traumatic Brain Injury in Mice [J].
Clond, Morgan A. ;
Lee, Bong-Seop ;
Yu, Jeffrey J. ;
Singer, Matthew B. ;
Amano, Takayuki ;
Lamb, Alexander W. ;
Drazin, Doniel ;
Kateb, Babak ;
Ley, Eric J. ;
Yu, John S. .
PLOS ONE, 2013, 8 (04)
[6]  
Dickinson BC, 2011, NAT CHEM BIOL, V7, P504, DOI [10.1038/nchembio.607, 10.1038/NCHEMBIO.607]
[7]   In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy [J].
Fan, Kelong ;
Xi, Juqun ;
Fan, Lei ;
Wang, Peixia ;
Zhu, Chunhua ;
Tang, Yan ;
Xu, Xiangdong ;
Liang, Minmin ;
Jiang, Bing ;
Yan, Xiyun ;
Gao, Lizeng .
NATURE COMMUNICATIONS, 2018, 9
[8]   Oxidant signals and oxidative stress [J].
Finkel, T .
CURRENT OPINION IN CELL BIOLOGY, 2003, 15 (02) :247-254
[9]   Intrinsic peroxidase-like activity of ferromagnetic nanoparticles [J].
Gao, Lizeng ;
Zhuang, Jie ;
Nie, Leng ;
Zhang, Jinbin ;
Zhang, Yu ;
Gu, Ning ;
Wang, Taihong ;
Feng, Jing ;
Yang, Dongling ;
Perrett, Sarah ;
Yan, Xiyun .
NATURE NANOTECHNOLOGY, 2007, 2 (09) :577-583
[10]   Antioxidant Therapies for Traumatic Brain Injury [J].
Hall, Edward D. ;
Vaishnav, Radhika A. ;
Mustafa, Ayman G. .
NEUROTHERAPEUTICS, 2010, 7 (01) :51-61