A STABILITY RESULT ON MATCHINGS IN 3-UNIFORM HYPERGRAPHS

被引:1
作者
Guo, Mingyang [1 ]
Lu, Hongliang [1 ]
Mao, Dingjia [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
3-hypergraph; matching; stability; fractional matching; INTERSECTION-THEOREMS; PERFECT MATCHINGS; MAXIMUM NUMBER; ERDOS; EDGES; SYSTEMS;
D O I
10.1137/21M1422720
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let n, s, k be three positive integers such that 1 <= s <= (n - k + 1)/k and let [n] = {1, . . . , n}. Let H be a k-graph with vertex set [n], and let e(H) denote the number of edges of H. Let v(H) and tau(H) denote the size of the largest matching and the size of a minimum vertex cover in H, respectively. Define A(i)(k)(n, s) := {e is an element of([n] k) : | e boolean AND [(s + 1)i - 1]| >= i} for 2 <= i <= k and HMn,sk := {e is an element of([n] k) : | e boolean AND [s - 1] not equal circle divide} boolean OR {S} boolean OR {e is an element of([n] k) : s is an element of e, e boolean AND S not equal circle divide}, where S = {s + 1, . . . , s + k}. Frankl and Kupavskii proposed a conjecture that if v(H) <= s and tau(H) > s, then e(H) <= max{|A(2)(k) (n, s)|, . . . , |A(k)(k) (n, s)|, |HMn,sk|}. In this paper, we prove this conjecture for k = 3 and sufficiently large n.
引用
收藏
页码:2339 / 2351
页数:13
相关论文
共 24 条
[1]   Large matchings in uniform hypergraphs and the conjectures of Erdos and Samuels [J].
Alon, Noga ;
Frank, Peter ;
Huang, Hao ;
Roedl, Vojtech ;
Rucinski, Andrzej ;
Sudakov, Benny .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2012, 119 (06) :1200-1215
[2]  
Alon Noga, 2008, PROBABILISTIC METHOD
[3]   SETS OF INDEPENDENT EDGES OF A HYPERGRAPH [J].
BOLLOBAS, B ;
DAYKIN, DE ;
ERDOS, P .
QUARTERLY JOURNAL OF MATHEMATICS, 1976, 27 (105) :25-32
[4]   INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS [J].
ERDOS, P ;
RADO, R ;
KO, C .
QUARTERLY JOURNAL OF MATHEMATICS, 1961, 12 (48) :313-&
[5]  
Erdos P., 1965, Annales Univ. Sci. Budapest Etvs Sect. Math, V10, P93
[6]  
Erdos Paul, 1959, Acta Mathematica Academiae Scientiarum Hungarica, V10, P337, DOI DOI 10.1007/BF02024498
[7]  
Frankl P., 1995, Handbook of combinatorics, P1293
[8]  
Frankl P., 1985, Eur. J. Comb., V6, P317
[9]  
Frankl P, 2021, Arxiv, DOI arXiv:1806.08855
[10]   Two problems on matchings in set families - In the footsteps of Erdos and Kleitman [J].
Frankl, Peter ;
Kupavskii, Andrey .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 138 :286-313