A comparative study of the photocatalytic oxidation of propane on anatase, rutile, and mixed-phase anatase-rutile TiO2 nanoparticles:: Role of surface intermediates

被引:130
作者
van der Meulen, T. [1 ]
Mattson, A. [1 ]
Oesterlund, L. [1 ]
机构
[1] FOI, Dept Environm & Protect, SE-90182 Umea, Sweden
关键词
photocatalysis; nanoparticles; TiO2; anatase; rutile; propane; surface intermediates; formate; Fourier transform infrared spectroscopy; mass spectrometry;
D O I
10.1016/j.jcat.2007.07.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The photocatalytic oxidation of propane was investigated by simultaneous in situ diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) and quadrupole mass spectrometry (QMS) on anatase, rutile, and mixed anatase-rutile TiO2 nanoparticles prepared by hydrothermal treatments of microemulsions. The mixed anatase-rutile sample was compared with a commercial sample (Degussa P25) with similar anatase to rutile mol% ratio. The measured carbon mass balance for the different TiO2 materials reveals that the total oxidation rate (propane --> CO2) over the first 25-min illumination period is highest for samples containing large anatase nanoparticles and that mixed anatase-rutile nanoparticles are superior to single-phase anatase nanoparticles. These findings are correlated with the main intermediate surface species observed on the different nanoparticle systems by DRIFTS. In particular, eta(1)-acetone and bridging bidentate formate (mu-formate) is detected. On both anatase and rutile, it-formate is the final hydrocarbon surface species. Further oxidation yields bicarbonate, carbonate, CO2, and H2O. On all TiO2 samples, the concentration of surface intermediates is found to be proportional to the accumulated carbon concentration, as deduced from the gas-phase carbon mass balance measurements. This shows that the rate-determining step is the oxidation of strongly bound surface intermediates. Furthermore, it is found that the rate-determining step is structure-sensitive. On anatase, photo-oxidation of acetone limits the total oxidation, whereas on rutile, formate does so. The latter is attributed to a combination of thermal dissociation of acetone on defect sites, which aids acetone oxidation, and the strong bonding of mu-formate to the (110) surface facets on rutile. A synergetic effect between anatase and rutile particles is observed, where the measured photo-oxidation rate from either QMS or DRIFT exceeds that for the individual constituent particles. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:131 / 144
页数:14
相关论文
共 49 条
[1]   Microemulsion-mediated room-temperature synthesis of high-surface-area rutile and its photocatalytic performance [J].
Andersson, M. ;
Kiselev, A. ;
Oesterlund, L. ;
Palmqvist, A. E. C. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (18) :6789-6797
[2]   Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol [J].
Andersson, M ;
Österlund, L ;
Ljungström, S ;
Palmqvist, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (41) :10674-10679
[3]  
[Anonymous], 1998, APPL SPECTROSCOPY
[4]   Evidence for structure sensitivity in the thermally activated and photocatalytic dehydrogenation of 2-propanol on TiO2 [J].
Brinkley, D ;
Engel, T .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (42) :9836-9841
[5]   INFRARED SPECTROSCOPIC IDENTIFICATION OF SPECIES ARISING FROM REACTIVE ADSORPTION OF CARBON OXIDES ON METAL-OXIDE SURFACES [J].
BUSCA, G ;
LORENZELLI, V .
MATERIALS CHEMISTRY, 1982, 7 (01) :89-126
[6]   Infrared studies of the reactive adsorption of organic molecules over metal oxides and of the mechanisms of their heterogeneously-catalyzed oxidation [J].
Busca, G .
CATALYSIS TODAY, 1996, 27 (3-4) :457-496
[7]   Photoinduced reactivity of titanium dioxide [J].
Carp, O ;
Huisman, CL ;
Reller, A .
PROGRESS IN SOLID STATE CHEMISTRY, 2004, 32 (1-2) :33-177
[8]   FTIR study of adsorption and reactions of methyl formate on powdered TiO2 [J].
Chuang, CC ;
Wu, WC ;
Huang, MC ;
Huang, IC ;
Lin, JL .
JOURNAL OF CATALYSIS, 1999, 185 (02) :423-434
[9]   Dynamic phenomena during the photocatalytic oxidation of ethanol and acetone over nanocrystalline TiO2:: simultaneous FTIR analysis of gas and surface species [J].
Coronado, JM ;
Kataoka, S ;
Tejedor-Tejedor, I ;
Anderson, MA .
JOURNAL OF CATALYSIS, 2003, 219 (01) :219-230
[10]  
COURBON H, 1973, J KINET CATAL, V14, P84