Influence of high melting elements on microstructure, tensile strength and creep resistance of the compositionally complex alloy Al10Co25Cr8Fe15Ni36Ti6

被引:15
作者
Haas, S. [1 ]
Manzoni, A. M. [2 ]
Holzinger, M. [1 ]
Glatzel, U. [1 ]
机构
[1] Univ Bayreuth, Met & Alloys, D-95447 Bayreuth, Germany
[2] Bundesanstalt Mat Forsch & Prufung, D-12205 Berlin, Germany
关键词
High-entropy alloys; Compositionally complex alloys; Tensile strength; Creep resistance; Precipitation hardening; HIGH-ENTROPY ALLOY; VOLUME FRACTIONS; BEHAVIOR; AL;
D O I
10.1016/j.matchemphys.2021.125163
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Due to its matrix/gamma ' structure, the compositionally complex alloy (CCA) Al10Co25Cr8Fe15Ni36Ti6 has excellent properties that fulfill the requirements for a high-temperature material. This base alloy is alloyed with small amounts of high melting elements to a further improvement of its properties, which results in different shapes, fractions and sizes of the two phases gamma ' and Heusler after various homogenization and annealing steps. By correlating this microstructure with time independent and dependent mechanical properties, conclusions can be drawn about the effects of the individual phases. The needle-shaped Heusler-phase leads to bad mechanical behavior if its phase fraction is too high. A fraction below 3 vol% is not critical in tensile tests, but it reduces the creep resistance compared to a purely two-phase matrix/gamma '-alloy. Sharp-edged cubic gamma '-particles and a coarse Heusler-phase without sharp edges in case of the base alloy with 0.5 at.% hafnium lead to the best tensile and creep properties in the high temperature range. At 750 degrees C, the Hf-containing alloy clearly outperforms two commercially used alloys in the targeted area of application when it comes to creep resistance.
引用
收藏
页数:10
相关论文
共 30 条
[1]   Threshold Stress Creep Behavior of Alloy 617 at Intermediate Temperatures [J].
Benz, Julian K. ;
Carroll, Laura J. ;
Wright, Jill K. ;
Wright, Richard N. ;
Lillo, Thomas M. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2014, 45A (07) :3010-3022
[2]  
Booker M.K., 1978, CHARACT MAT SERV ELE, P1
[3]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[4]  
Coupland D.R., 1982, PLATIN MET REV, V26, P146
[5]   High-Temperature Tensile Strength of Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy (High-Entropy Alloy) [J].
Daoud, H. M. ;
Manzoni, A. M. ;
Wanderka, N. ;
Glatzel, U. .
JOM, 2015, 67 (10) :2271-2277
[6]  
Davis J.R., 1998, METALS HDB, V10th, DOI DOI 10.1017/CBO9781107415324.004
[7]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158
[8]   Creep-rupture behavior of a directionally solidified nickel-base superalloy [J].
Guo, JT ;
Yuan, C ;
Yang, HC ;
Lupinc, V ;
Maldini, M .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2001, 32 (05) :1103-1110
[9]   Stability of ordered L12 and B2 precipitates in face centered cubic based high entropy alloys - Al0.3CoFeCrNi and Al0.3CuFeCrNi2 [J].
Gwalani, B. ;
Soni, V. ;
Choudhuri, D. ;
Lee, M. ;
Hwang, J. Y. ;
Nam, S. J. ;
Ryu, H. ;
Hong, S. H. ;
Banerjee, R. .
SCRIPTA MATERIALIA, 2016, 123 :130-134
[10]   Tensile yield strength of a single bulk Al0.3CoCrFeNi high entropy alloy can be tuned from 160 MPa to 1800 MPa [J].
Gwalani, Bharat ;
Gorsse, Stephane ;
Choudhuri, Deep ;
Zheng, Yufeng ;
Mishra, Rajiv S. ;
Banerjee, Rajarshi .
SCRIPTA MATERIALIA, 2019, 162 :18-23