An interdisciplinary conceptual study of Artificial Intelligence (AI) for helping benefit-risk assessment practices

被引:2
|
作者
Chassang, Gauthier [1 ,2 ,3 ,4 ]
Thomsen, Mogens [1 ,2 ,3 ,4 ]
Rumeau, Pierre [4 ,5 ]
Sedes, Florence [4 ,6 ]
Delfin, Alejandra [1 ,2 ,4 ]
机构
[1] INSERM, UMR1295, CERPOP, Team BIOETHICS, F-31000 Toulouse, France
[2] Univ Paul Sabatier Toulouse 3, CERPOP, UMR1295, F-31000 Toulouse, France
[3] GIS Genotoul, Eth & Biosci Platform Genotoul Societal, Toulouse, France
[4] Univ Fed Toulouse UFT, Working Grp Digital & Robot Eth, Unesco Chair Eth Sci & Soc, Toulouse, France
[5] Grp Interet Publ E Sante Occitanie, Toulouse, France
[6] IRIT CNRS, Toulouse, France
关键词
AI Ethics; AI qualification matrix; benefit-risk assessment; conceptual analysis; interdisciplinary study; CONSCIOUSNESS;
D O I
10.3233/AIC-201523
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a comprehensive analysis of existing concepts of AI coming from different disciplines: Psychology and engineering tackle the notion of intelligence, while ethics and law intend to regulate AI innovations. The aim is to identify shared notions or discrepancies to consider for qualifying AI systems. Relevant concepts are integrated into a matrix intended to help defining more precisely when and how computing tools (programs or devices) may be qualified as AI while highlighting critical features to serve a specific technical, ethical and legal assessment of challenges in AI development. Some adaptations of existing notions of AI characteristics are proposed. The matrix is a risk-based conceptual model designed to allow an empirical, flexible and scalable qualification of AI technologies in the perspective of benefit-risk assessment practices, technological monitoring and regulatory compliance: it offers a structured reflection tool for stakeholders in AI development that are engaged in responsible research and innovation.
引用
收藏
页码:121 / 146
页数:26
相关论文
共 50 条
  • [1] Benefit-risk assessment conceptual framework for exposure to biologics during pregnancy
    Bozzi, Laura
    Jacobson, Melanie H.
    Yost, Emily
    Cafone, Joseph
    Sheahan, Anna
    Levitan, Bennett S.
    Nelson, Robert M.
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2023, 32 : 529 - 529
  • [2] Implementing Benefit-Risk Assessment for the Periodic Benefit-Risk Evaluation Report
    Warner, Margaret R.
    Wolka, Anne M.
    Noel, Rebecca A.
    THERAPEUTIC INNOVATION & REGULATORY SCIENCE, 2016, 50 (03) : 342 - 346
  • [3] Implementing Benefit-Risk Assessment for the Periodic Benefit-Risk Evaluation Report
    Margaret R. Warner
    Anne M. Wolka
    Rebecca A. Noel
    Therapeutic Innovation & Regulatory Science, 2016, 50 : 342 - 346
  • [4] Artificial Intelligence (AI) and periodontal risk assessment
    Santana, Luis Carlos Leal
    ORAL DISEASES, 2024, 30 (05) : 3504 - 3505
  • [5] Benefit-risk assessment of vaccines
    Kochhar, Sonali
    Izurieta, Hector S.
    Chandler, Rebecca E.
    Hacker, Adam
    Chen, Robert T.
    Levitan, Bennett
    VACCINE, 2024, 42 (04) : 969 - 971
  • [6] Estimand in benefit-risk assessment
    Ren, Xinru
    Chen, X. Gregory
    Seifu, Yodit
    Wang, William
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2023, 33 (04) : 452 - 465
  • [7] BENEFIT-RISK ASSESSMENT TODAY
    HALL, RE
    JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY, 1978, 55 (01) : 193 - 197
  • [8] Emerging Good Practices for Quantitative Benefit-Risk Assessment: A Step Forward
    Ghabri, Salah
    VALUE IN HEALTH, 2023, 26 (04) : 447 - 448
  • [9] Benefit-risk assessment of acne therapies
    Seukeran, DC
    Eady, EA
    Cunliffe, WJ
    LANCET, 1997, 349 (9060): : 1251 - 1252
  • [10] Benefit-risk assessment of vaccination strategies
    Hanslik, Thomas
    Boelle, Pierre Yves
    M S-MEDECINE SCIENCES, 2007, 23 (04): : 391 - 398