Crystal capillary origami capsule with self-assembled nanostructures

被引:5
|
作者
Park, Kwangseok [1 ]
Kim, Hyoungsoo [1 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Mech Engn, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
SCHERRER EQUATION; DRUG-DELIVERY; CRYSTALLIZATION; ENCAPSULATION; DEFORMATION; DIFFUSIVITY; FABRICATION; COMPETITION; DROPLETS; GROWTH;
D O I
10.1039/d1nr02456f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The self-assembling mechanism of elasto-capillaries opens new applications in micro and nanotechnology by providing 3D assembly structures with 2D planar unit cells, so-called capillary origami. To date, the final structure has been designed based on the predetermined shape and size of the unit cell. Here, we show that plate-like salt crystallites grow and cover the emulsion interface, which is driven by Laplace pressure. Eventually, it creates a spherical capsule with self-assembled nanostructures. The capsule and the crystallite are investigated by scanning electron microscopy and X-ray diffraction analysis. To explain the mechanism, we develop a theoretical model to estimate the capsule size, the shell thickness, and the conditions necessary to form the shell based on a thin-walled pressure vessel. The proposed crystal capillary origami can fabricate a three-dimensional self-assembled salt capsule without any complicated procedures. We believe that it can offer a new physicochemical avenue for the spontaneous and facile fabrication of water-soluble carrier particles.
引用
收藏
页码:14656 / 14665
页数:11
相关论文
共 50 条
  • [1] SELF-ASSEMBLED NANOSTRUCTURES
    Lu, Wei
    MicroNano2008-2nd International Conference on Integration and Commercialization of Micro and Nanosystems, Proceedings, 2008, : 293 - 294
  • [2] Self-Assembled Fullerene Nanostructures
    Shrestha, Lok Kumar
    Shrestha, Rekha Goswami
    Hill, Jonathan P.
    Ariga, Katsuhiko
    JOURNAL OF OLEO SCIENCE, 2013, 62 (08) : 541 - 553
  • [3] Self-assembled peptidic nanostructures
    Toksoz, Sila
    Guler, Mustafa O.
    NANO TODAY, 2009, 4 (06) : 458 - 469
  • [4] Self-assembled CoAs nanostructures
    Farrell, HH
    LaViolette, RA
    Schultz, BD
    Lüdge, K
    Palmstrom, CJ
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2003, 21 (04): : 1760 - 1764
  • [5] Self-assembled nanostructures in biomineralization
    Xu, HF
    Chen, TH
    Nie, ZM
    Jiang, YB
    Wang, YF
    Liu, J
    Konishi, H
    Wu, MM
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2003, 67 (18) : A541 - A541
  • [6] Self-assembled ferroelectric nanostructures
    Szafraniak, I
    Bhattacharyya, S
    Harnagea, C
    Scholz, R
    Alexe, M
    INTEGRATED FERROELECTRICS, 2004, 68 : 279 - +
  • [7] Self-assembled magnetic nanostructures
    Jia, Z.
    Misra, R. D. K.
    MATERIALS TECHNOLOGY, 2008, 23 (02) : 66 - 80
  • [8] Self-assembled plasmonic nanostructures
    Klinkova, Anna
    Choueiri, Rachelle M.
    Kumacheva, Eugenia
    CHEMICAL SOCIETY REVIEWS, 2014, 43 (11) : 3976 - 3991
  • [9] Self-assembled porphyrin nanostructures
    Medforth, Craig John
    Wang, Zhongchun
    Martin, Kathleen Ewing
    Song, Yujiang
    Jacobsen, John Lewis
    Shelnutt, John Allen
    CHEMICAL COMMUNICATIONS, 2009, (47) : 7261 - 7277
  • [10] Patterning self-assembled monolayers with DNA origami
    Liu, Haitao
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244