Heat kernel estimates for random walks with degenerate weights

被引:21
作者
Andres, Sebastian [1 ]
Deuschel, Jean-Dominique [2 ]
Slowik, Martin [2 ]
机构
[1] Univ Bonn, Bonn, Germany
[2] Tech Univ Berlin, Berlin, Germany
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2016年 / 21卷
关键词
random walk; heat kernel; Moser iteration; RANDOM CONDUCTANCE MODEL; INVARIANCE-PRINCIPLE; UPPER-BOUNDS; GRAPHS; DECAY; ENVIRONMENT;
D O I
10.1214/16-EJP4382
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish Gaussian-type upper bounds on the heat kernel for a continuous-time random walk on a graph with unbounded weights under an integrability assumption. For the proof we use Davies' perturbation method, where we show a maximal inequality for the perturbed heat kernel via Moser iteration.
引用
收藏
页数:21
相关论文
共 19 条
  • [1] CONVERGENCE OF AVERAGES OF POINT TRANSFORMATIONS
    AKCOGLU, MA
    DELJUNCO, A
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 49 (01) : 265 - 266
  • [2] Harnack inequalities on weighted graphs and some applications to the random conductance model
    Andres, Sebastian
    Deuschel, Jean-Dominique
    Slowik, Martin
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2016, 164 (3-4) : 931 - 977
  • [3] INVARIANCE PRINCIPLE FOR THE RANDOM CONDUCTANCE MODEL IN A DEGENERATE ERGODIC ENVIRONMENT
    Andres, Sebastian
    Deuschel, Jean-Dominique
    Slowik, Martin
    [J]. ANNALS OF PROBABILITY, 2015, 43 (04) : 1866 - 1891
  • [4] [Anonymous], 2014, Optimization in Microgrid Design and Energy Management
  • [5] INVARIANCE PRINCIPLE FOR THE RANDOM CONDUCTANCE MODEL WITH UNBOUNDED CONDUCTANCES
    Barlow, M. T.
    Deuschel, J-D.
    [J]. ANNALS OF PROBABILITY, 2010, 38 (01) : 234 - 276
  • [6] Random walks on supercritical percolation clusters
    Barlow, MT
    [J]. ANNALS OF PROBABILITY, 2004, 32 (04) : 3024 - 3084
  • [7] Anomalous heat-kernel decay for random walk among bounded random conductances
    Berger, N.
    Biskup, M.
    Hoffman, C. E.
    Kozma, G.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2008, 44 (02): : 374 - 392
  • [8] Subdiffusive heat-kernel decay in four-dimensional i.i.d. random conductance models
    Biskup, M.
    Boukhadra, O.
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2012, 86 : 455 - 481
  • [9] CARLEN EA, 1987, ANN I H POINCARE-PR, V23, P245
  • [10] Chen X., 2014, MATH ANN IN PRESS, P1