Strong temperature - Dependence of Ni -alloying influence on the stacking fault energy in austenitic stainless steel

被引:27
作者
Dong, Zhihua [1 ]
Li, Wei [1 ]
Chai, Guocai [2 ,3 ]
Vitos, Levente [1 ,4 ,5 ]
机构
[1] KTH Royal Inst Technol, Dept Mat Sci & Engn, Appl Mat Phys, SE-10044 Stockholm, Sweden
[2] AB Sandvik Mat Technol R&D Ctr, SE-81181 Sandviken, Sweden
[3] Linkoping Univ, Dept Management & Engn, Div Engn Mat, SE-58183 Linkoping, Sweden
[4] Uppsala Univ, Div Mat Theory, Dept Phys & Astron, Box 516, SE-75121 Uppsala, Sweden
[5] Wigner Res Ctr Phys, Res Inst Solid State Phys & Opt, POB 49, H-1525 Budapest, Hungary
基金
匈牙利科学研究基金会; 瑞典研究理事会;
关键词
Alloying; Stacking fault energy; Temperature; Austenitic stainless steel; Ab initio calculation; DEFORMATION MICROSTRUCTURE; POTENTIAL MODEL; APPROXIMATION; MARTENSITE; BEHAVIOR; STATE; MN;
D O I
10.1016/j.scriptamat.2019.12.013
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Using ab initio alloy theory, we calculate the impact of Ni on the stacking fault energy in austenitic stainless steel as a function of temperature. We show that the influence of Ni strongly couples with temperature. While a positive effect on the stacking fault energy is obtained at ambient temperature, the opposite negative effect is disclosed at elevated temperatures. An important rationale behind is demonstrated to be the variation of magneto-volume coupling induced by Ni alloying. The alloy influence on the finite temperature evolution of Ni impact is evaluated for elements Cr, Mo and N. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:438 / 441
页数:4
相关论文
共 45 条
[1]  
Antonsson K.H., 2016, ACTA MAT, V111, P39, DOI [10.1016/j.actamat.2016.03.042., DOI 10.1016/J.ACTAMAT.2016.03.042]
[2]   On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels [J].
Byun, TS .
ACTA MATERIALIA, 2003, 51 (11) :3063-3071
[3]   Characterization of Austenitic Stainless Steels Deformed at Elevated Temperature [J].
Calmunger, Mattias ;
Chai, Guocai ;
Eriksson, Robert ;
Johansson, Sten ;
Moverare, Johan J. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2017, 48A (10) :4525-4538
[4]   Thermodynamic modeling of the stacking fault energy of austenitic steels [J].
Curtze, S. ;
Kuokkala, V. -T. ;
Oikari, A. ;
Talonen, J. ;
Hanninen, H. .
ACTA MATERIALIA, 2011, 59 (03) :1068-1076
[5]   State-of-the-knowledge on TWIP steel [J].
De Cooman, B. C. ;
Kwon, O. ;
Chin, K. -G. .
MATERIALS SCIENCE AND TECHNOLOGY, 2012, 28 (05) :513-527
[6]   Twinning-induced plasticity (TWIP) steels [J].
De Cooman, Bruno C. ;
Estrin, Yuri ;
Kim, Sung Kyu .
ACTA MATERIALIA, 2018, 142 :283-362
[7]   Influence of Mn content on the intrinsic energy barriers of paramagnetic FeMn alloys from longitudinal spin fluctuation theory [J].
Dong, Zhihua ;
Schonecker, Stephan ;
Chen, Dengfu ;
Li, Wei ;
Lu, Song ;
Vitos, Levente .
INTERNATIONAL JOURNAL OF PLASTICITY, 2019, 119 :123-139
[8]   Plastic deformation modes in paramagnetic γ-Fe from longitudinal spin fluctuation theory [J].
Dong, Zhihua ;
Schonecker, Stephan ;
Li, Wei ;
Kwon, Se Kyun ;
Vitos, Levente .
INTERNATIONAL JOURNAL OF PLASTICITY, 2018, 109 :43-53
[9]   Thermal spin fluctuations in CoCrFeMnNi high entropy alloy [J].
Dong, Zhihua ;
Schonecker, Stephan ;
Li, Wei ;
Chen, Dengfu ;
Vitos, Levente .
SCIENTIFIC REPORTS, 2018, 8
[10]  
DYSON DJ, 1970, J IRON STEEL I, V208, P469