Real-time identification of three Tor pluggable transports using machine learning techniques

被引:10
|
作者
Soleimani, Mohammad Hassan Mojtahed [1 ]
Mansoorizadeh, Muharram [1 ]
Nassiri, Mohammad [1 ]
机构
[1] Bu Ali Sina Univ, Comp Engn Dept, Hamadan, Iran
来源
JOURNAL OF SUPERCOMPUTING | 2018年 / 74卷 / 10期
关键词
Tor; Pluggable transports; Tor Plugins; Traffic identification; Machine learning; DEEP PACKET INSPECTION;
D O I
10.1007/s11227-018-2268-y
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Tor is a widespread network for anonymity over the Internet. Network owners try to identify and block Tor flows. On the other side, Tor developers enhance flow anonymity with various plugins. Tor and its plugins can be detected by deep packet inspection (DPI) methods. However, DPI-based solutions are computation intensive, need considerable human effort, and usually are hard to maintain and update. These issues limit the application of DPI methods in practical scenarios. As an alternative, we propose to use machine learning-based techniques that automatically learn from examples and adapt to new data whenever required. We report an empirical study on detection of three widely used Tor pluggable transports, namely Obfs3, Obfs4, and ScrambleSuit using four learning algorithms. We investigate the performance of Adaboost and Random Forests as two ensemble methods. In addition, we study the effectiveness of SVM and C4.5 as well-known parametric and nonparametric classifiers. These algorithms use general statistics of first few packets of the inspected flows. Experimental results conducted on real traffics show that all the adopted algorithms can perfectly detect the desired traffics by only inspecting first 10-50 packets. The trained classifiers can readily be employed in modern network switches and intelligent traffic monitoring systems.
引用
收藏
页码:4910 / 4927
页数:18
相关论文
共 50 条
  • [1] Real-time identification of three Tor pluggable transports using machine learning techniques
    Mohammad Hassan Mojtahed Soleimani
    Muharram Mansoorizadeh
    Mohammad Nassiri
    The Journal of Supercomputing, 2018, 74 : 4910 - 4927
  • [2] Real-Time Identification of Medicinal Plants using Machine Learning Techniques
    Sivaranjani, C.
    Kalinathan, Lekshmi
    Amutha, R.
    Kathavarayan, Ruba Soundar
    Kumar, Jegadish K. J.
    2019 SECOND INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN DATA SCIENCE (ICCIDS 2019), 2019,
  • [3] Real time degradation identification of UAV using machine learning techniques
    Manukyan, Anush
    Olivares-Mendez, Miguel A.
    Voos, Holger
    Geist, Matthieu
    2017 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS'17), 2017, : 1223 - 1230
  • [4] Real-Time Parameter Identification for Forging Machine Using Reinforcement Learning
    Zhang, Dapeng
    Du, Lifeng
    Gao, Zhiwei
    PROCESSES, 2021, 9 (10)
  • [5] Real-time isooctane and pentane gas identification based on machine learning analysis techniques
    Oyarzo Huichaqueo, Marco
    Barra Oliva, Pabla
    2021 IEEE CHILEAN CONFERENCE ON ELECTRICAL, ELECTRONICS ENGINEERING, INFORMATION AND COMMUNICATION TECHNOLOGIES (IEEE CHILECON 2021), 2021, : 765 - 769
  • [6] Real-Time Water and Electricity Consumption Monitoring Using Machine Learning Techniques
    Bashir, Shariq
    IEEE ACCESS, 2023, 11 : 11511 - 11528
  • [7] Real-Time Hybrid Intrusion Detection System Using Machine Learning Techniques
    Dutt, Inadyuti
    Borah, Samarjeet
    Maitra, Indra Kanta
    Bhowmik, Kuharan
    Maity, Ayindrilla
    Das, Suvosmita
    ADVANCES IN COMMUNICATION, DEVICES AND NETWORKING, 2018, 462 : 885 - 894
  • [8] Real-Time Application Identification Method for Mobile Networks Using Machine Learning
    Ou, Tatsuhiro
    Nakao, Akihiro
    PROCEEDINGS OF 2024 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM, NOMS 2024, 2024,
  • [9] Real-Time Driver Drowsiness Detection Using Facial Analysis and Machine Learning Techniques
    Essahraui, Siham
    Lamaakal, Ismail
    El Hamly, Ikhlas
    Maleh, Yassine
    Ouahbi, Ibrahim
    El Makkaoui, Khalid
    Filali Bouami, Mouncef
    Plawiak, Pawel
    Alfarraj, Osama
    Abd El-Latif, Ahmed A.
    SENSORS, 2025, 25 (03)
  • [10] Real-time traffic congestion prediction using big data and machine learning techniques
    Chawla, Priyanka
    Hasurkar, Rutuja
    Bogadi, Chaithanya Reddy
    Korlapati, Naga Sindhu
    Rajendran, Rajasree
    Ravichandran, Sindu
    Tolem, Sai Chaitanya
    Gao, Jerry Zeyu
    WORLD JOURNAL OF ENGINEERING, 2024, 21 (01) : 140 - 155