Neural network segmentation methods for fatigue crack images obtained with X-ray tomography

被引:14
作者
Xiao, Ce [1 ]
Buffiere, Jean-Yves [1 ]
机构
[1] INSA LYON MATEIS, 20 Ave Albert Einstein, F-69100 Villeurbanne, France
关键词
Synchrotron tomography; Crack segmentation; Convolutional neural network; Fatigue; PHASE; MICROTOMOGRAPHY; EXTRACTION; RESOLUTION; DAMAGE; ENHANCEMENT; SURFACE; GROWTH;
D O I
10.1016/j.engfracmech.2021.107823
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Synchrotron X-ray tomography allows to observe fatigue crack propagation during in situ tests. Accurately segmenting the 3D shape of the cracks from the tomography image is essential for quantitative analysis. Fatigue cracks have small openings which result in low contrast images making crack segmentation difficult. Phase contrast available at synchrotron sources improves crack detection but it also increases the complexity of the image and human intervention is generally used to help traditional segmentation methods. In this work, an image segmentation method based on a convolutional neural network is developed to replace the user interpretation of images. Combined with a 'Hessian matrix' filter, this method can successfully extract 3D shapes of internal fatigue cracks in metals.
引用
收藏
页数:15
相关论文
共 42 条
[1]  
Aguet F, 2005, IEEE INT C IM PROC 2 IEEE INT C IM PROC 2, V2, pII
[2]  
Bhowmik UK, 2014, IEEE SOUTHEASTCON
[3]   3-D observations of short fatigue crack interaction with lamellar and duplex microstructures in a two-phase titanium alloy [J].
Birosca, S. ;
Buffiere, J. Y. ;
Karadge, M. ;
Preuss, M. .
ACTA MATERIALIA, 2011, 59 (04) :1510-1522
[4]   Three-dimensional visualisation of fatigue cracks in metals using high resolution synchrotron X-ray micro-tomography [J].
Buffiere, J. Y. ;
Ferrie, E. ;
Proudhon, H. ;
Ludwig, W. .
MATERIALS SCIENCE AND TECHNOLOGY, 2006, 22 (09) :1019-1024
[5]   In Situ Experiments with X ray Tomography: an Attractive Tool for Experimental Mechanics [J].
Buffiere, J. -Y. ;
Maire, E. ;
Adrien, J. ;
Masse, J. -P. ;
Boller, E. .
EXPERIMENTAL MECHANICS, 2010, 50 (03) :289-305
[6]   DVC-based image subtraction to detect microcracking in lightweight concrete [J].
Chateau, C. ;
Nguyen, T. T. ;
Bornert, M. ;
Yvonnet, J. .
STRAIN, 2018, 54 (05)
[7]  
Chen J, 2016, ARXIV160901006CS ARXIV160901006CS
[8]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
[9]   Observation of microstructure and damage in materials by phase sensitive radiography and tomography [J].
Cloetens, P ;
PateyronSalome, M ;
Buffiere, JY ;
Peix, G ;
Baruchel, J ;
Peyrin, F ;
Schlenker, M .
JOURNAL OF APPLIED PHYSICS, 1997, 81 (09) :5878-5886
[10]  
Croton LindaCP., 2018, Scientific Reports, V8, P1