PetIGA: A framework for high-performance isogeometric analysis

被引:125
作者
Dalcin, L. [1 ,2 ,3 ,4 ]
Collier, N. [5 ]
Vignal, P. [6 ]
Cortes, A. M. A. [2 ]
Calo, V. M. [2 ]
机构
[1] King Abdullah Univ Sci & Technol, Extreme Comp Res Ctr, Thuwal, Saudi Arabia
[2] King Abdullah Univ Sci & Technol, Ctr Numer Porous Media NumPor Comp Elect & Math S, Thuwal, Saudi Arabia
[3] Ctr Invest Metodos Computac CIMEC, Santa Fe, Argentina
[4] Consejo Nacl Invest Cient & Tecn, Santa Fe, Argentina
[5] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN USA
[6] King Abdullah Univ Sci & Technol, Ctr Numer Porous Media NumPor Mat Sci & Engn, Thuwal, Saudi Arabia
基金
欧盟地平线“2020”;
关键词
Isogeometric analysis; High-performance computing; Finite element method; Open-source software; NAVIER-STOKES; FINITE-ELEMENTS; CONTINUITY; NURBS; COST; SIMULATION; EQUATIONS; LIBRARY;
D O I
10.1016/j.cma.2016.05.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present PetIGA, a code framework to approximate the solution of partial differential equations using isogeometric analysis. PetIGA can be used to assemble matrices and vectors which come from a Galerkin weak form, discretized with Non-Uniform Rational B-spline basis functions. We base our framework on PETSc, a high-performance library for the scalable solution of partial differential equations, which simplifies the development of large-scale scientific codes, provides a rich environment for prototyping, and separates parallelism from algorithm choice. We describe the implementation of PetIGA, and exemplify its use by solving a model nonlinear problem. To illustrate the robustness and flexibility of PetIGA, we solve some challenging nonlinear partial differential equations that include problems in both solid and fluid mechanics. We show strong scaling results on up to 4096 cores, which confirm the suitability of PetIGA for large scale simulations. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:151 / 181
页数:31
相关论文
共 72 条
[1]  
Ait-Haddou R., 2014, ARXIV14107196, P1
[2]   The role of continuity in residual-based variational multiscale modeling of turbulence [J].
Akkerman, I. ;
Bazilevs, Y. ;
Calo, V. M. ;
Hughes, T. J. R. ;
Hulshoff, S. .
COMPUTATIONAL MECHANICS, 2008, 41 (03) :371-378
[3]   Isogeometric analysis of free-surface flow [J].
Akkerman, I. ;
Bazilevs, Y. ;
Kees, C. E. ;
Farthing, M. W. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (11) :4137-4152
[4]   Hybrid scheduling for the parallel solution of linear systems [J].
Amestoy, PR ;
Guermouche, A ;
L'Excellent, JY ;
Pralet, S .
PARALLEL COMPUTING, 2006, 32 (02) :136-156
[5]  
[Anonymous], 2006, A GUIDE TO NUMPY
[6]  
[Anonymous], 2016, Proceedings of the Platform for Advanced Scientific Computing Conference, DOI [10.1145/2929908.2929913, DOI 10.1145/2929908.2929913]
[7]  
[Anonymous], 1998, Computational Inelasticity. Interdisciplinary applied mathematics
[8]   ISOGEOMETRIC COLLOCATION METHODS [J].
Auricchio, F. ;
Da Veiga, L. Beirao ;
Hughes, T. J. R. ;
Reali, A. ;
Sangalli, G. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (11) :2075-2107
[9]  
Balay S, 1997, MODERN SOFTWARE TOOLS FOR SCIENTIFIC COMPUTING, P163
[10]  
Balay S., 2016, TECH REP