Sea surface salinity subfootprint variability estimates from regional high-resolution model simulations

被引:12
作者
D'Addezio, Joseph M. [1 ]
Bingham, Frederick M. [2 ]
Jacobs, Gregg A. [1 ]
机构
[1] Naval Res Lab, Ocean Dynam & Predict, 1009 Balch Blvd, Stennis Space Ctr, MS 39529 USA
[2] Univ N Carolina, Dept Phys & Phys Oceanog, Wilmington, NC USA
关键词
Sea surface salinity; Subfootprint variability; Modeling; OCEAN; AQUARIUS; RETRIEVALS; PLUME; SMOS;
D O I
10.1016/j.rse.2019.111365
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Sea surface salinity (SSS) subfootprint variability (SFV) is estimated using high-resolution, realistically forced regional simulations of the Arabian Sea and western Pacific with an integration period of one year. A weighted standard deviation was calculated for footprint sizes of 100 km, 40 km, 20 km, and 10 km for all model time steps and then median (sigma(50)) and 95th percentile (sigma(95)) values were calculated along the time dimension. An additional method, wavenumber spectral analysis (sigma(k)), was also employed to obtain a different but comparable estimate. ass and sigma(95) maxima ( > 1 psu) are found in shallow waters along the continental shelves where strong river outflow is present. Open ocean values of both statistics are much lower (similar to 0.1 psu). The wavenumber spectral analysis allowed the estimation of total SSS spatial variance over 640 km, which was then compared to the estimates obtained by integrating time-averaged SSS power spectral density (PSD) at wavelengths <= 100 km, 40 km, 20 km, and 10 km. For both geographic regions, the ratio of variance at and below each wavelength to the total variance across all estimated wavelengths is approximately 50%, 30%, 15%, and 5%, respectively. sigma(50), sigma(95), and sigma(k) magnitudes as a function of footprint size follow a power-law relationship. The observed strong decline in SSS SFV below 40 km suggests that the current effective resolution of the SMAP and SMOS satellites is advantageous for limiting the impact of SFV on the satellites' error budget.
引用
收藏
页数:11
相关论文
共 50 条
[41]   Quantitative Assessment of Sea Surface Salinity Estimates Using a High-Frequency Radar in Ise Bay, Japan [J].
Toguchi, Yu ;
Fujii, Satoshi .
REMOTE SENSING, 2023, 15 (12)
[42]   Seasonal and Interannual Variability of Sea Surface Salinity Near Major River Mouths of the World Ocean Inferred from Gridded Satellite and In-Situ Salinity Products [J].
Fournier, Severine ;
Lee, Tong .
REMOTE SENSING, 2021, 13 (04) :1-14
[43]   Seasonal and Interannual Salinity Variability on the Northeast US Continental Shelf: Insights From Satellite Sea Surface Salinity and Implications for Stratification [J].
Ryan, Svenja ;
Ummenhofer, Caroline C. ;
Gawarkiewicz, Glen G. .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2024, 129 (11)
[44]   Sea Ice Rheology Experiment (SIREx): 2. Evaluating Linear Kinematic Features in High-Resolution Sea Ice Simulations [J].
Hutter, Nils ;
Bouchat, Amelie ;
Dupont, Frederic ;
Dukhovskoy, Dmitry ;
Koldunov, Nikolay ;
Lee, Younjoo J. ;
Lemieux, Jean-Francois ;
Lique, Camille ;
Losch, Martin ;
Maslowski, Wieslaw ;
Myers, Paul G. ;
Olason, Einar ;
Rampal, Pierre ;
Rasmussen, Till ;
Talandier, Claude ;
Tremblay, Bruno ;
Wang, Qiang .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2022, 127 (04)
[45]   Sea surface salinity estimates from spaceborne L-band radiometers: An overview of the first decade of observation (2010-2019) [J].
Reul, N. ;
Grodsky, S. A. ;
Arias, M. ;
Boutin, J. ;
Catany, R. ;
Chapron, B. ;
D'Amico, F. ;
Dinnat, E. ;
Donlon, C. ;
Fore, A. ;
Fournier, S. ;
Guimbard, S. ;
Hasson, A. ;
Kolodziejczyk, N. ;
Lagerloef, G. ;
Lee, T. ;
Le Vine, D. M. ;
Lindstrom, E. ;
Maes, C. ;
Mecklenburg, S. ;
Meissner, T. ;
Olmedo, E. ;
Sabia, R. ;
Tenerelli, J. ;
Thouvenin-Masson, C. ;
Turiel, A. ;
Vergely, J. L. ;
Vinogradova, N. ;
Wentz, F. ;
Yueh, S. .
REMOTE SENSING OF ENVIRONMENT, 2020, 242
[46]   Assessment of High-Resolution Dynamical and Machine Learning Models for Prediction of Sea Ice Concentration in a Regional Application [J].
Fritzner, Sindre ;
Graversen, Rune ;
Christensen, Kai H. .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2020, 125 (11)
[47]   High-Resolution Mapping of Japanese Microplastic and Macroplastic Emissions from the Land into the Sea [J].
Nihei, Yasuo ;
Yoshida, Takushi ;
Kataoka, Tomoya ;
Ogata, Riku .
WATER, 2020, 12 (04)
[48]   Surface processes in the 7 November 2014 medicane from air-sea coupled high-resolution numerical modelling [J].
Bouin, Marie-Noelle ;
Brossier, Cindy Lebeaupin .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (11) :6861-6881
[49]   Multiscale dynamical analysis of a high-resolution numerical model simulation of the Solomon Sea circulation [J].
Djath, Bughsin' ;
Verron, Jacques ;
Melet, Angelique ;
Gourdeau, Lionel ;
Barnier, Bernard ;
Molines, Jean-Marc .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2014, 119 (09) :6286-6304
[50]   Dynamic Interpolation of Sea Surface Height and Potential Applications for Future High-Resolution Altimetry Mapping [J].
Ubelmann, Clement ;
Klein, Patrice ;
Fu, Lee-Lueng .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2015, 32 (01) :177-184