Quantifying the effects of tempering on individual phase properties of DP980 steel with nanoindentation

被引:51
作者
Cheng, G. [1 ]
Zhang, F. [2 ]
Ruimi, A. [3 ]
Field, D. P. [2 ]
Sun, X. [1 ]
机构
[1] Pacific NW Natl Lab, Phys & Computat Sci Directorate, POB 999, Richland, WA 99352 USA
[2] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA
[3] Texas A&M Univ, Dept Mech Engn, Doha, Qatar
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2016年 / 667卷
关键词
Nanoindentation; Plastic flow properties; Tempering; DP steels; STRAIN GRADIENT PLASTICITY; MECHANICAL-PROPERTIES; DEFORMATION-BEHAVIOR; HARDENING BEHAVIOR; TENSILE PROPERTIES; HEAT-TREATMENT; MARTENSITE; FERRITE; STRENGTH; HARDNESS;
D O I
10.1016/j.msea.2016.05.011
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Tempering treatment is conducted on a commercial dual phase (DP) 980 steel at 250 degrees C and 400 degrees C for 60 min each. Ferrite and martensite grains are distinguished using electron backscatter diffraction (EBSD) and scanning probe microscopy (SPM), and the martensite volume fractions (MVF) are determined based on the image quality (IQ) map. Indentation tests combined with a newly developed inverse method are used to obtain the individual phase flow properties in each sample. The results show that, i) tempering significantly reduces martensite yield strength, while it slightly reduces the ferrite yield strength; ii) tempering temperature has a more significant influence on the work hardening exponent of ferrite than that of martensite. As a validation, a simple rule-of-mixtures is used to verify the above-predicted individual phase flow stresses with the experimentally obtained overall true stress vs. true strain curves. (c) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:240 / 249
页数:10
相关论文
共 56 条
[21]   Atomistic simulations of stainless steels: a many-body potential for the Fe-Cr-C system [J].
Henriksson, K. O. E. ;
Bjorkas, C. ;
Nordlund, K. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (44)
[22]   Simulations of cementite: An analytical potential for the Fe-C system [J].
Henriksson, K. O. E. ;
Nordlund, K. .
PHYSICAL REVIEW B, 2009, 79 (14)
[23]   Mechanism-based strain gradient plasticity - II. Analysis [J].
Huang, Y ;
Gao, H ;
Nix, WD ;
Hutchinson, JW .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2000, 48 (01) :99-128
[24]   Microstructural evolution during tempering of a multiphase steel containing retained austenite [J].
Jha, BK ;
Mishra, NS .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1999, 263 (01) :42-55
[25]   Effects of tempering on the mechanical properties of high strength dual-phase steels [J].
Kamp, A. ;
Celotto, S. ;
Hanlon, D. N. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 538 :35-41
[26]   Digital image correlation studies for microscopic strain distribution and damage in dual phase steels [J].
Kang, Jidong ;
Ososkov, Yuriy ;
Embury, J. David ;
Wilkinson, David S. .
SCRIPTA MATERIALIA, 2007, 56 (11) :999-1002
[27]   Evaluating plastic flow properties by characterizing indentation size effect using a sharp indenter [J].
Kim, Ju-Young ;
Kang, Seung-Kyun ;
Greer, Julia R. ;
Kwon, Dongil .
ACTA MATERIALIA, 2008, 56 (14) :3338-3343
[28]   Effects of quenching and tempering on the microstructure and bake hardening behavior of ferrite and dual phase steels [J].
Kuang, C. F. ;
Li, J. ;
Zhang, S. G. ;
Wang, J. ;
Liu, H. F. ;
Volinsky, A. A. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 613 :178-183
[29]  
Kuziak R, 2008, ARCH CIV MECH ENG, V8, P103, DOI 10.1016/S1644-9665(12)60197-6
[30]   On the relationships between hardness and the elastic and plastic properties of isotropic power-law hardening materials [J].
Lan, Hongzhi ;
Venkatesh, T. A. .
PHILOSOPHICAL MAGAZINE, 2014, 94 (01) :35-55