Deep learning for COVID-19 detection based on CT images

被引:105
作者
Zhao, Wentao [1 ,2 ]
Jiang, Wei [1 ]
Qiu, Xinguo [1 ]
机构
[1] Zhejiang Univ Technol, Coll Mech Engn, Hangzhou 310023, Peoples R China
[2] Zhejiang Inst Mech & Elect Engn, Sch Intelligent Transportat, Hangzhou 310053, Peoples R China
关键词
CHEST-X-RAY; PNEUMONIA; DIAGNOSIS;
D O I
10.1038/s41598-021-93832-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
COVID-19 has tremendously impacted patients and medical systems globally. Computed tomography images can effectively complement the reverse transcription-polymerase chain reaction testing. This study adopted a convolutional neural network for COVID-19 testing. We examined the performance of different pre-trained models on CT testing and identified that larger, out-of-field datasets boost the testing power of the models. This suggests that a priori knowledge of the models from out-of-field training is also applicable to CT images. The proposed transfer learning approach proves to be more successful than the current approaches described in literature. We believe that our approach has achieved the state-of-the-art performance in identification thus far. Based on experiments with randomly sampled training datasets, the results reveal a satisfactory performance by our model. We investigated the relevant visual characteristics of the CT images used by the model; these may assist clinical doctors in manual screening.
引用
收藏
页数:12
相关论文
共 60 条
[1]  
Ai T, 2020, RADIOLOGY, DOI [10.5772/intechopen.80730, DOI 10.1148/radiol.2020200642, 10.1148/radiol.202020064224, DOI 10.1148/RADIOL.2020200642, 10.1148/radiol.2020200642]
[2]  
[Anonymous], COVID 19 RADIOLOGY R
[3]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[4]   Deep Learning Applications to Combat Novel Coronavirus (COVID-19) Pandemic [J].
Asraf A. ;
Islam M.Z. ;
Haque M.R. ;
Islam M.M. .
SN Computer Science, 2020, 1 (6)
[5]   Performance of Radiologists in Differentiating COVID-19 from Non-COVID-19 Viral Pneumonia at Chest CT [J].
Bai, Harrison X. ;
Hsieh, Ben ;
Xiong, Zeng ;
Halsey, Kasey ;
Choi, Ji Whae ;
Tran, Thi My Linh ;
Pan, Ian ;
Shi, Lin-Bo ;
Wang, Dong-Cui ;
Mei, Ji ;
Jiang, Xiao-Long ;
Zeng, Qiu-Hua ;
Egglin, Thomas K. ;
Hu, Ping-Feng ;
Agarwal, Saurabh ;
Xie, Fang-Fang ;
Li, Sha ;
Healey, Terrance ;
Atalay, Michael K. ;
Liao, Wei-Hua .
RADIOLOGY, 2020, 296 (02) :E46-E54
[6]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[7]   Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR [J].
Fang, Yicheng ;
Zhang, Huangqi ;
Xie, Jicheng ;
Lin, Minjie ;
Ying, Lingjun ;
Pang, Peipei ;
Ji, Wenbin .
RADIOLOGY, 2020, 296 (02) :E115-E117
[8]   The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 [J].
Gorbalenya, Alexander E. ;
Baker, Susan C. ;
Baric, Ralph S. ;
de Groot, Raoul J. ;
Drosten, Christian ;
Gulyaeva, Anastasia A. ;
Haagmans, Bart L. ;
Lauber, Chris ;
Leontovich, Andrey M. ;
Neuman, Benjamin W. ;
Penzar, Dmitry ;
Perlman, Stanley ;
Poon, Leo L. M. ;
Samborskiy, Dmitry V. ;
Sidorov, Igor A. ;
Sola, Isabel ;
Ziebuhr, John .
NATURE MICROBIOLOGY, 2020, 5 (04) :536-544
[9]   Nonparametric Variational Auto-encoders for Hierarchical Representation Learning [J].
Goyal, Prasoon ;
Hu, Zhiting ;
Liang, Xiaodan ;
Wang, Chenyu ;
Xing, Eric P. .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :5104-5112
[10]   COVID-Net CT-2: Enhanced Deep Neural Networks for Detection of COVID-19 From Chest CT Images Through Bigger, More Diverse Learning [J].
Gunraj, Hayden ;
Sabri, Ali ;
Koff, David ;
Wong, Alexander .
FRONTIERS IN MEDICINE, 2022, 8