Inverse Scattering and Soliton Solutions of Nonlocal Complex Reverse-Spacetime Modified Korteweg-de Vries Hierarchies

被引:28
作者
Ling, Liming [1 ]
Ma, Wen-Xiu [2 ,3 ,4 ,5 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 510640, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[3] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[4] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[5] North West Univ, Sch Math & Stat Sci, Mafikeng Campus,Private Bag X2046, ZA-2735 Mmabatho, South Africa
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 03期
基金
中国国家自然科学基金;
关键词
matrix spectral problem; soliton hierarchy; nonlocal PT symmetry; Riemann-Hilbert problem; Inverse scattering; soliton solution; NONLINEAR SCHRODINGER-EQUATIONS; ADJOINT SYMMETRY CONSTRAINTS; RIEMANN-HILBERT PROBLEMS; LONG-TIME ASYMPTOTICS; LUMP SOLUTIONS; KDV EQUATIONS; TRANSFORM; INTEGRABILITY; DYNAMICS;
D O I
10.3390/sym13030512
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper aims to explore nonlocal complex reverse-spacetime modified Korteweg-de Vries (mKdV) hierarchies via nonlocal symmetry reductions of matrix spectral problems and to construct their soliton solutions by the inverse scattering transforms. The corresponding inverse scattering problems are formulated by building the associated Riemann-Hilbert problems. A formulation of solutions to specific Riemann-Hilbert problems, with the jump matrix being the identity matrix, is established, where eigenvalues could equal adjoint eigenvalues, and thus N-soliton solutions to the nonlocal complex reverse-spacetime mKdV hierarchies are obtained from the reflectionless transforms.
引用
收藏
页数:17
相关论文
共 55 条
[1]   INVERSE SCATTERING TRANSFORM FOR THE NONLOCAL REVERSE SPACE-TIME NONLINEAR SCHRODINGER EQUATION [J].
Ablowitz, M. J. ;
Feng, Bao-Feng ;
Luo, Xu-Dan ;
Musslimani, Z. H. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2018, 196 (03) :1241-1267
[2]   Inverse scattering transform for the nonlocal nonlinear Schrodinger equation with nonzero boundary conditions [J].
Ablowitz, Mark J. ;
Luo, Xu-Dan ;
Musslimani, Ziad H. .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (01)
[3]   Integrable Nonlocal Nonlinear Equations [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
STUDIES IN APPLIED MATHEMATICS, 2017, 139 (01) :7-59
[4]   Inverse scattering transform for the integrable nonlocal nonlinear Schrodinger equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
NONLINEARITY, 2016, 29 (03) :915-946
[5]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[6]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[7]   SCATTERING AND INVERSE SCATTERING FOR 1ST ORDER SYSTEMS [J].
BEALS, R ;
COIFMAN, RR .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (01) :39-90
[8]  
Belokolos E. D., 1994, Algebro-Geometric Approach to Nonlinear Integrable Equations
[9]   SCATTERING OF LOCALIZED SOLITONS IN THE PLANE [J].
BOITI, M ;
LEON, JJP ;
MARTINA, L ;
PEMPINELLI, F .
PHYSICS LETTERS A, 1988, 132 (8-9) :432-439
[10]  
Doktorov E. V., 2007, A Dressing Method in Mathematical Physics