Periodic solutions of Abel differential equations

被引:30
作者
Alwash, M. A. M. [1 ]
机构
[1] W Los Angeles Coll, Dept Math, Los Angeles, CA 90230 USA
关键词
periodic solution; abel differential equation; rigid system; limit cycle; Hopf bifurcation;
D O I
10.1016/j.jmaa.2006.07.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a class of polynomial non-autonomous differential equations of degree n, we use phase plane analysis to show that each equation in this class has n periodic solutions. The result implies that certain rigid two-dimensional systems have at most one limit cycle which appears through multiple Hopf bifurcation. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1161 / 1169
页数:9
相关论文
共 14 条
[1]  
Alwash M.A.M., 2005, ELECT J DIFFERENTIAL, V84, P1
[2]   NONAUTONOMOUS EQUATIONS RELATED TO POLYNOMIAL TWO-DIMENSIONAL SYSTEMS [J].
ALWASH, MAM ;
LLOYD, NG .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1987, 105 :129-152
[3]   PERIODIC-SOLUTIONS OF A QUARTIC NONAUTONOMOUS EQUATION [J].
ALWASH, MAM ;
LLOYD, NG .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1987, 11 (07) :809-820
[4]   Periodic solutions of a quartic differential equation and Groebner bases [J].
Alwash, MAM .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 75 (01) :67-76
[5]  
[Anonymous], DIFFER EQU DYN SYST
[6]  
CONTI R., 1994, Lecture Notes in Pure and Appl. Math., V152, P21
[7]   Limit cycles for rigid cubic systems [J].
Gasull, A ;
Prohens, R ;
Torregrosa, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 303 (02) :391-404
[8]   Exact number of limit cycles for a family of rigid systems [J].
Gasull, A ;
Torregrosa, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (03) :751-758
[9]   Hilbert-type numbers for Abel equations, growth and zeros of holomorphic functions [J].
Ilyashenko, Y .
NONLINEARITY, 2000, 13 (04) :1337-1342
[10]  
Lins Neto A., 1980, INVENT MATH, V59, P67