Multiple solutions for non-periodic Schrodinger lattice systems with perturbation and super-linear terms

被引:7
作者
Chen, Guanwei [1 ]
Schechter, Martin [2 ]
机构
[1] Univ Jinan, Sch Math Sci, Jinan 250022, Shandong, Peoples R China
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2019年 / 70卷 / 05期
基金
中国国家自然科学基金;
关键词
Non-periodic Schrodinger lattice systems; Perturbed terms; Super-linear; Multiple solutions; DISCRETE NONLINEAR SCHRODINGER; GAP SOLITONS; HOMOCLINIC SOLUTIONS; EQUATIONS; EXISTENCE;
D O I
10.1007/s00033-019-1199-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain the existence of two non-trivial solutions for a class of non-periodic Schrodinger lattice systems with perturbed terms when the nonlinearities are super-linear at infinity. In addition, several examples are given to illustrate our results. Our theorems appear to be the first such result.
引用
收藏
页数:9
相关论文
共 30 条
[1]   Perturbed Schrodinger lattice systems: existence of homoclinic solutions [J].
Chen, Guanwei ;
Ma, Shiwang .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (04) :1083-1096
[2]   Non-periodic Schrodinger lattice systems with perturbed and asymptotically linear terms: Negative energy solutions [J].
Chen, Guanwei ;
Schechter, Martin .
APPLIED MATHEMATICS LETTERS, 2019, 93 :34-39
[3]   Standing waves for discrete Schrodinger equations in infinite lattices with saturable nonlinearities [J].
Chen, Guanwei ;
Ma, Shiwang ;
Wang, Zhi-Qiang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (06) :3493-3518
[4]   Non-periodic discrete Schrodinger equations: ground state solutions [J].
Chen, Guanwei ;
Schechter, Martin .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03)
[5]   Homoclinic solutions of discrete nonlinear Schrodinger equations with asymptotically or super linear terms [J].
Chen, Guanwei ;
Ma, Shiwang .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 :787-798
[6]   Ground State and Geometrically Distinct Solitons of Discrete Nonlinear Schrodinger Equations with Saturable Nonlinearities [J].
Chen, Guanwei ;
Ma, Shiwang .
STUDIES IN APPLIED MATHEMATICS, 2013, 131 (04) :389-413
[7]   Discrete nonlinear Schrodinger equations with superlinear nonlinearities [J].
Chen, Guanwei ;
Ma, Shiwang .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) :5496-5507
[8]   Discretizing light behaviour in linear and nonlinear waveguide lattices [J].
Christodoulides, DN ;
Lederer, F ;
Silberberg, Y .
NATURE, 2003, 424 (6950) :817-823
[9]   NON-CONVEX MINIMIZATION PROBLEMS [J].
EKELAND, I .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (03) :443-474
[10]  
Ekeland I, 1990, CONVEXITY METHODHA