Chip-Scale Ultra-Low Field Atomic Magnetometer Based on Coherent Population Trapping

被引:10
作者
Hong, Hyun-Gue [1 ]
Park, Sang Eon [1 ]
Lee, Sang-Bum [1 ]
Heo, Myoung-Sun [1 ]
Park, Jongcheol [2 ]
Kim, Tae Hyun [2 ]
Kim, Hee Yeon [2 ]
Kwon, Taeg Yong [1 ]
机构
[1] Korea Res Inst Stand & Sci, Time & Frequency Grp, Daejeon 34113, South Korea
[2] Natl NanoFab Ctr, Dept Convergence Sensor, Daejeon 34141, South Korea
关键词
optical magnetometry; coherent population trapping; quantum sensor; chip-scale atomic device;
D O I
10.3390/s21041517
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We report a chip-scale atomic magnetometer based on coherent population trapping, which can operate near zero magnetic field. By exploiting the asymmetric population among magnetic sublevels in the hyperfine ground state of cesium, we observe that the resonance signal acquires sensitivity to magnetic field in spite of degeneracy. A dispersive signal for magnetic field discrimination is obtained near-zero-field as well as for finite fields (tens of micro-tesla) in a chip-scale device of 0.94 cm(3) volume. This shows that it can be readily used in low magnetic field environments, which have been inaccessible so far in miniaturized atomic magnetometers based on coherent population trapping. The measured noise floor of 300 pT/Hz(1/2) at the zero-field condition is comparable to that of the conventional finite-field measurement obtained under the same conditions. This work suggests a way to implement integrated atomic magnetometers with a wide operating range.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 30 条
[1]   Magnetic field imaging with microfabricated optically-pumped magnetometers [J].
Alem, Orang ;
Mhaskar, Rahul ;
Jimenez-Martinez, Ricardo ;
Sheng, Dong ;
LeBlanc, John ;
Trahms, Lutz ;
Sander, Tilmann ;
Kitching, John ;
Knappe, Svenja .
OPTICS EXPRESS, 2017, 25 (07) :7849-7858
[2]   Coherent population trapping in laser spectroscopy [J].
Arimondo, E .
PROGRESS IN OPTICS, VOL XXXV, 1996, 35 :257-354
[3]   Moving magnetoencephalography towards real-world applications with a wearable system [J].
Boto, Elena ;
Holmes, Niall ;
Leggett, James ;
Roberts, Gillian ;
Shah, Vishal ;
Meyer, Sofie S. ;
Munoz, Leonardo Duque ;
Mullinger, Karen J. ;
Tierney, Tim M. ;
Bestmann, Sven ;
Barnes, Gareth R. ;
Bowtell, Richard ;
Brookes, Matthew J. .
NATURE, 2018, 555 (7698) :657-+
[4]   Nondestructive in-line sub-picomolar detection of magnetic nanoparticles in flowing complex fluids [J].
Bougas, Lykourgos ;
Langenegger, Lukas D. ;
Mora, Carlos A. ;
Zeltner, Martin ;
Stark, Wendelin J. ;
Wickenbrock, Arne ;
Blanchard, John W. ;
Budker, Dmitry .
SCIENTIFIC REPORTS, 2018, 8
[5]   Optical magnetometry [J].
Budker, Dmitry ;
Romalis, Michael .
NATURE PHYSICS, 2007, 3 (04) :227-234
[6]  
Hong HG, 2020, APPL PHYS EXPRESS, V13
[7]   Loop-locked coherent population trapping magnetometer based on a fiber electro-optic modulator [J].
Hu, Yong ;
Feng, Y. Y. ;
Xu, Chi ;
Xue, H. B. ;
Sun, Li .
APPLIED OPTICS, 2014, 53 (10) :2158-2162
[8]   Magnetocardiography on an isolated animal heart with a room-temperature optically pumped magnetometer [J].
Jensen, Kasper ;
Skarsfeldt, Mark Alexander ;
Staerkind, Hans ;
Arnbak, Jens ;
Balabas, Mikhail V. ;
Olesen, Soren-Peter ;
Bentzen, Bo Hjorth ;
Polzik, Eugene S. .
SCIENTIFIC REPORTS, 2018, 8
[9]   Sensitivity Comparison of Mx and Frequency-Modulated Bell-Bloom Cs Magnetometers in a Microfabricated Cell [J].
Jimenez-Martinez, Ricardo ;
Griffith, W. Clark ;
Wang, Ying-Ju ;
Knappe, Svenja ;
Kitching, John ;
Smith, Ken ;
Prouty, Mark D. .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2010, 59 (02) :372-378
[10]   Multi-channel atomic magnetometer for magnetoencephalography: A configuration study [J].
Kim, Kiwoong ;
Begus, Samo ;
Xia, Hui ;
Lee, Seung-Kyun ;
Jazbinsek, Vojko ;
Trontelj, Zvonko ;
Romalis, Michael V. .
NEUROIMAGE, 2014, 89 :143-151