Deep level optical spectroscopy of GaN nanorods

被引:35
|
作者
Armstrong, A. [1 ]
Li, Q. [1 ]
Bogart, K. H. A. [1 ]
Lin, Y. [1 ]
Wang, G. T. [1 ]
Talin, A. A. [2 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
[2] Sandia Natl Labs, Livermore, CA 94551 USA
关键词
conduction bands; deep levels; energy gap; gallium compounds; III-V semiconductors; MOCVD; nanostructured materials; nanotechnology; photoemission; photoluminescence; wide band gap semiconductors; CURRENT COLLAPSE; NANOWIRES; CARBON; PHOTOCONDUCTIVITY; HETEROSTRUCTURES; SEMICONDUCTORS; TRANSISTORS; CAPACITANCE; DEFECTS; EPITAXY;
D O I
10.1063/1.3211317
中图分类号
O59 [应用物理学];
学科分类号
摘要
Deep level defects in GaN nanorods (NRs) grown by metal organic chemical vapor deposition were studied using deep level optical spectroscopy (DLOS) and microphotoluminescence (mu-PL). DLOS determines the absolute optical ionization energy, discerns majority versus minority carrier photoemission, and has sensitivity to nonradiative defect centers. These are important aspects of deep level spectroscopy for NRs that are not obtainable using luminescence techniques alone. Deep level defects were observed via DLOS at E-c-2.81 eV, E-c-1.77 eV, and E-c-3.19 eV, where E-c is the conduction band minimum. The mu-PL spectra revealed a dominant defect band peaked near 2.19 eV. The E-c-2.81 eV band gap state and the 2.19 eV PL peak can be attributed to the same defect center within a one-dimensional configuration-coordinate model. The NR DLOS spectra are compared to reports for thin film GaN, and possible physical origins of the deep level defects are discussed.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Nature of deep center emissions in GaN
    Sedhain, A.
    Li, J.
    Lin, J. Y.
    Jiang, H. X.
    APPLIED PHYSICS LETTERS, 2010, 96 (15)
  • [2] Deep traps in AlGaN/GaN heterostructures studied by deep level transient spectroscopy: Effect of carbon concentration in GaN buffer layers
    Fang, Z-Q
    Claflin, B.
    Look, D. C.
    Green, D. S.
    Vetury, R.
    JOURNAL OF APPLIED PHYSICS, 2010, 108 (06)
  • [3] Exciton recombination in ZnO nanorods grown on GaN/sapphire template
    Mohanta, S. K.
    Tripathy, S.
    Zhang, X. H.
    Kim, D. C.
    Soh, C. B.
    Yong, A. M.
    Liu, W.
    Cho, H. K.
    APPLIED PHYSICS LETTERS, 2009, 94 (04)
  • [4] Photoionization study of deep centers in GaN/AlGaN multiple quantum wells
    Zhang, S. K.
    Wang, W. B.
    Alfano, R. R.
    Teke, A.
    He, L.
    Dogan, S.
    Johnstone, D. J.
    Morkoc, H.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2010, 28 (03):
  • [5] GaN nanowire surface state observed using deep level optical spectroscopy
    Armstrong, A.
    Li, Q.
    Lin, Y.
    Talin, A. A.
    Wang, G. T.
    APPLIED PHYSICS LETTERS, 2010, 96 (16)
  • [6] Deep level investigation by capacitance and conductance transient spectroscopy in AlGaN/GaN/SiC HEMTs
    Gassoumi, M.
    Grimbert, B.
    Poisson, M. A.
    Fontaine, J.
    Zaidi, M. A.
    Gaquiere, C.
    Maaref, H.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2009, 11 (11): : 1713 - 1717
  • [7] Current deep level transient spectroscopy analysis of AlInN/GaN high electron mobility transistors: Mechanism of gate leakage
    Chikhaoui, W.
    Bluet, J. -M.
    Poisson, M. -A.
    Sarazin, N.
    Dua, C.
    Bru-Chevallier, C.
    APPLIED PHYSICS LETTERS, 2010, 96 (07)
  • [8] Deep levels in GaN studied by deep level transient spectroscopy and Laplace transform deep-level spectroscopy
    Kamyczek, Paulina
    Placzek-Popko, Ewa
    Zielony, Eunika
    Zytkiewicz, Zbigniew
    MATERIALS SCIENCE-POLAND, 2013, 31 (04): : 572 - 576
  • [9] Optical properties of InGaN/GaN nanopillars fabricated by postgrowth chemically assisted ion beam etching
    Kawakami, Y.
    Kaneta, A.
    Su, L.
    Zhu, Y.
    Okamoto, K.
    Funato, M.
    Kikuchi, A.
    Kishino, K.
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (02)
  • [10] The Growth of GaN Nanorods with Different Temperature by Molecular Beam Epitaxy
    Hsu, Kuang-Yuan
    Wang, Cheng-Yu
    Liu, Chuan-Pu
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (05) : K109 - K112