Entropy engineering induced low thermal conductivity in medium-entropy (Zr, Ti, Hf)CoSb triple half-Heusler compounds

被引:13
作者
Chen, Rongchun [1 ]
Kang, Huijun [1 ,2 ]
Min, Ruonan [1 ]
Chen, Zongning [1 ,2 ]
Guo, Enyu [1 ,2 ]
Yang, Xiong [1 ]
Tian, Zhen [1 ]
Wang, Tongmin [1 ,2 ]
机构
[1] Dalian Univ Technol, Sch Mat Sci & Engn, Key Lab Solidificat Control & Digital Preparat Tec, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Ningbo Inst, Ningbo 315000, Peoples R China
关键词
Entropy engineering; Triple half-Heusler compounds; Low thermal conductivity; THERMOELECTRIC PERFORMANCE; ALLOYS; TRANSPORT; TINISN; HF;
D O I
10.1016/j.mtla.2022.101453
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study proposes a new concept to realize a low thermal conductivity in half-Heusler (HH) compounds and develop triple HH compounds via entropy engineering. The n-type medium-entropy M1-xNxCoSb ( M = Zr, Ti, Hf; N = V , Ta, equimolar) triple HH compounds are prepared via levitation melting and spark plasma sintering. Entropy engineering induced Zr-site disorder is characterized via the Raman spectroscopy. Subsequently, the thermal conductivity of the n-type M0.9N0.1CoSb triple HH compound (4.1 Wm(-1)K(-1)) at 323 K is less than-67.5% that of the ZrCoSb HH compound (12.6 Wm- 1K- 1). Furthermore, the Zr-site donor doping considerably improved the power factor, affording a peak figure of merit of ~0.18 for the M0.9N0.1CoSb HH compound at 923 K. This approach proposes a new pathway to lower the thermal conductivity of HH compounds, establishing a high standard for developing high-performance HH compounds.
引用
收藏
页数:7
相关论文
共 34 条
[1]   Double Half-Heuslers [J].
Anand, Shashwat ;
Wood, Max ;
Xia, Yi ;
Wolverton, Chris ;
Snyder, G. Jeffrey .
JOULE, 2019, 3 (05) :1226-1238
[2]   Temperature Dependent n-Type Self Doping in Nominally 19-Electron Half-Heusler Thermoelectric Materials [J].
Anand, Shashwat ;
Xia, Kaiyang ;
Zhu, Tiejun ;
Wolverton, Chris ;
Snyder, Gerald Jeffrey .
ADVANCED ENERGY MATERIALS, 2018, 8 (30)
[3]   A valence balanced rule for discovery of 18-electron half-Heuslers with defects [J].
Anand, Shashwat ;
Xia, Kaiyang ;
Hegde, Vinay I. ;
Aydemir, Umut ;
Kocevski, Vancho ;
Zhu, Tiejun ;
Wolverton, Chris ;
Snyder, G. Jeffrey .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (06) :1480-1488
[4]   Suppression of thermal conductivity without impeding electron mobility in n-type XNiSn half-Heusler thermoelectrics [J].
Barczak, S. A. ;
Quinn, R. J. ;
Halpin, J. E. ;
Domosud, K. ;
Smith, R., I ;
Baker, A. R. ;
Don, E. ;
Forbes, I ;
Refson, K. ;
MacLaren, D. A. ;
Bos, J. W. G. .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (47) :27124-27134
[5]   Enhanced thermoelectric performance in p-type ZrCoSb based half-Heusler alloys employing nanostructuring and compositional modulation [J].
Chauhan, Nagendra S. ;
Bathula, Sivaiah ;
Vishwakarma, Avinash ;
Bhardwaj, Ruchi ;
Johari, Kishor Kumar ;
Gahtori, Bhasker ;
Dhar, Ajay .
JOURNAL OF MATERIOMICS, 2019, 5 (01) :94-102
[6]   Synthesis and thermoelectric properties of high-entropy half-Heusler MFe1-xCoxSb (M = equimolar Ti, Zr, Hf, V, Nb, Ta) [J].
Chen, Kan ;
Zhang, Ruizhi ;
Bos, Jan-Willem G. ;
Reece, Michael J. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 892
[7]   Effect of Hf Concentration on Thermoelectric Properties of Nanostructured N-Type Half-Heusler Materials HfxZr1-xNiSn0.99Sb0.01 [J].
Chen, Shuo ;
Lukas, Kevin C. ;
Liu, Weishu ;
Opeil, Cyril P. ;
Chen, Gang ;
Ren, Zhifeng .
ADVANCED ENERGY MATERIALS, 2013, 3 (09) :1210-1214
[8]   Improving thermoelectric properties of ZrPtSn-based half-Heusler compound by Sb doping [J].
Dai, Chu-Kun ;
Song, Qing-Feng ;
Xie, Li ;
Liu, Rui-Heng ;
Bai, Sheng-Qiang ;
Chen, Li-Dong .
RARE METALS, 2021, 40 (10) :2838-2846
[9]   Transport and thermoelectric properties of Nb-doped FeV0.64Hf0.16 Ti0.2Sb half-Heusler alloys synthesized by two ball milling regimes [J].
El-Khouly, A. ;
Adam, A. M. ;
Altowairqi, Y. ;
Serhiienko, I ;
Chernyshova, E. ;
Ivanova, A. ;
Kurichenko, V. L. ;
Sedegov, A. ;
Karpenkov, D. ;
Novitskii, A. ;
Voronin, A. ;
Parkhomenko, Yu ;
Khovaylo, V .
JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 890
[10]   Optimizing the thermoelectric performance of FeVSb half-Heusler compound via Hf-Ti double doping [J].
El-Khouly, A. ;
Novitskii, A. ;
Serhiienko, I ;
Kalugina, A. ;
Sedegov, A. ;
Karpenkov, D. ;
Voronin, A. ;
Khovaylo, V ;
Adam, A. M. .
JOURNAL OF POWER SOURCES, 2020, 477