Mittag-Leffler synchronization of fractional-order uncertain chaotic systems

被引:2
作者
Wang Qiao [1 ]
Ding Dong-Sheng [1 ]
Qi Dong-Lian [1 ]
机构
[1] Zhejiang Univ, Coll Elect Engn, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
chaos; synchronization; adaptive control; Mittag-Leffler stability; ADAPTIVE IMPULSIVE SYNCHRONIZATION; STABILITY;
D O I
10.1088/1674-1056/24/6/060508
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper deals with the synchronization of fractional-order chaotic systems with unknown parameters and unknown disturbances. An adaptive control scheme combined with fractional-order update laws is proposed. The asymptotic stability of the error system is proved in the sense of generalized Mittag-Leffler stability. The two fractional-order chaotic systems can be synchronized in the presence of model uncertainties and additive disturbances. Finally these new developments are illustrated in examples and numerical simulations are provided to demonstrate the effectiveness of the proposed control scheme.
引用
收藏
页数:6
相关论文
共 29 条
[1]   A Lyapunov-based control scheme for robust stabilization of fractional chaotic systems [J].
Aghababa, Mohammad Pourmahmood .
NONLINEAR DYNAMICS, 2014, 78 (03) :2129-2140
[2]   Lyapunov functions for fractional order systems [J].
Aguila-Camacho, Norelys ;
Duarte-Mermoud, Manuel A. ;
Gallegos, Javier A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) :2951-2957
[3]   Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models [J].
Ahmed, E. ;
El-Sayed, A. M. A. ;
El-Saka, H. A. A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) :542-553
[4]   On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rossler, Chua and Chen systems [J].
Ahmed, E. ;
El-Sayed, A. M. A. ;
El-Saka, Hala A. A. .
PHYSICS LETTERS A, 2006, 358 (01) :1-4
[5]  
Camacho N. A., 2014, COMMUN NONLINEAR SCI, V41, P2734
[6]   Circuit simulation for synchronization of a fractional-order and integer-order chaotic system [J].
Chen, Diyi ;
Wu, Cong ;
Iu, Herbert H. C. ;
Ma, Xiaoyi .
NONLINEAR DYNAMICS, 2013, 73 (03) :1671-1686
[7]   Application of Takagi-Sugeno fuzzy model to a class of chaotic synchronization and anti-synchronization [J].
Chen, Diyi ;
Zhao, Weili ;
Sprott, Julien Clinton ;
Ma, Xiaoyi .
NONLINEAR DYNAMICS, 2013, 73 (03) :1495-1505
[8]   Synchronization between integer-order chaotic systems and a class of fractional-order chaotic system based on fuzzy sliding mode control [J].
Chen, Diyi ;
Zhang, Runfan ;
Sprott, Julien Clinton ;
Ma, Xiaoyi .
NONLINEAR DYNAMICS, 2012, 70 (02) :1549-1561
[9]   Passivity-based fractional-order integral sliding-mode control design for uncertain fractional-order nonlinear systems [J].
Dadras, Sara ;
Momeni, Hamid Reza .
MECHATRONICS, 2013, 23 (07) :880-887
[10]   Control of a fractional-order economical system via sliding mode [J].
Dadras, Sara ;
Momeni, Hamid Reza .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (12) :2434-2442