Classification of Urine Odour Using Machine Learning Methods

被引:1
作者
Xing, Yuxin [1 ,2 ]
Gardner, Julian W. [1 ]
机构
[1] Univ Warwick, Sch Engn, Coventry, W Midlands, England
[2] Zhejiang Univ, Ctr Opt & Electromagnet Res, Coll Opt Sci & Engn, Hangzhou, Peoples R China
来源
2022 IEEE INTERNATIONAL SYMPOSIUM ON OLFACTION AND ELECTRONIC NOSE (ISOEN 2022) | 2022年
关键词
MOX; odour detection; artificial neural network; machine learning;
D O I
10.1109/ISOEN54820.2022.9789601
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper presents an odour sensing device with machine learning algorithms that can classify urine odour to aid incontinent individuals. The device contains custom made metal oxide sensors that are controlled by a Teensy 3.6 microcontroller. The gas classification experiment was performed with an automatic test rig on four compounds, acetone, ammonia, ethyl acetate and synthetic urine; at five concentration levels and three humidity levels. The collected data were processed employing three classifier methods, k-nearest neighbour (KNN), a shallow neural network (MLP) and a convolutional neural network (CNN). The overall classification accuracies of these three models are 93.5%, 92.6% and 95.4%, respectively. More importantly, both KNN and CNN have 100% success rate in urine classification, and only one misclassification of synthetic urine occurred with the shallow neural network.
引用
收藏
页数:3
相关论文
共 10 条
  • [1] Identification of metabolic markers in patients with type 2 Diabetes by Ultrafast gas chromatography coupled to electronic nose. A pilot study
    Beatriz Mendez-Rodriguez, Karen
    Figueroa-Vega, Nicte
    Arturo Ilizaliturri-Hernandez, Cesar
    Cardona-Alvarado, Monica
    Antonio Borjas-Garcia, Jaime
    Kornhauser, Carlos
    Manuel Malacara, Juan
    Flores-Ramirez, Rogelio
    Javier Perez-Vazquez, Francisco
    [J]. BIOMEDICAL CHROMATOGRAPHY, 2020, 34 (12)
  • [2] The Human Urine Metabolome
    Bouatra, Souhaila
    Aziat, Farid
    Mandal, Rupasri
    Guo, An Chi
    Wilson, Michael R.
    Knox, Craig
    Bjorndahl, Trent C.
    Krishnamurthy, Ramanarayan
    Saleem, Fozia
    Liu, Philip
    Dame, Zerihun T.
    Poelzer, Jenna
    Huynh, Jessica
    Yallou, Faizath S.
    Psychogios, Nick
    Dong, Edison
    Bogumil, Ralf
    Roehring, Cornelia
    Wishart, David S.
    [J]. PLOS ONE, 2013, 8 (09):
  • [3] Prostate cancer screening using chemometric processing of GC-MS profiles obtained in the headspace above urine samples
    Deev, Vladislav
    Solovieva, Svetlana
    Andreev, Evgeny
    Protoshchak, Vladimir
    Karpushchenko, Evgeny
    Sleptsov, Aleksander
    Kartsova, Liudmila
    Bessonova, Elena
    Legin, Andrey
    Kirsanov, Dmitry
    [J]. JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES, 2020, 1155
  • [4] Impact of overactive bladder symptoms on employment, social interactions and emotional well-being in six European countries
    Irwin, DE
    Milsom, I
    Kopp, Z
    Abrams, P
    Cardozo, L
    [J]. BJU INTERNATIONAL, 2006, 97 (01) : 96 - 100
  • [5] NHS England, 2018, Excellence in Continence Care: Practical guidance for commissioners, and leaders in health and social care
  • [6] System Identification of Electronic Nose Data From Cyanobacteria Experiments
    Searle, Graham E.
    Gardner, Julian W.
    Chappell, Michael J.
    Godfrey, Keith R.
    Chapman, Michael J.
    [J]. IEEE SENSORS JOURNAL, 2002, 2 (03) : 218 - 229
  • [7] A comparative study of the analysis of human urine headspace using gas chromatography-mass spectrometry
    Smith, S.
    Burden, H.
    Persad, R.
    Whittington, K.
    Costello, B. de Lacy
    Ratcliffe, N. M.
    Probert, C. S.
    [J]. JOURNAL OF BREATH RESEARCH, 2008, 2 (03)
  • [8] H2S Sensing in Dry and Humid H2 Environment With p-Type CuO Thick-Film Gas Sensors
    Urasinska-Wojcik, Barbara
    Gardner, Julian W.
    [J]. IEEE SENSORS JOURNAL, 2018, 18 (09) : 3502 - 3508
  • [9] World Health Organization (WHO), 1998, WHO CALLS 1 INT CONS
  • [10] Xing Y., 2019, 20 INT C SOLID STATE