Analysis of Moments Based Methods for Fractional Gaussian Noise Estimation

被引:2
作者
Mossberg, Magnus [1 ]
机构
[1] Karlstad Univ, Dept Phys & Elect Engn, SE-65188 Karlstad, Sweden
关键词
Asymptotic variance; covariance function; fractional Gaussian noise; parameter estimation; BROWNIAN-MOTION;
D O I
10.1109/TSP.2012.2191545
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Fractional Gaussian noise, given as the increment of fractional Brownian motion, is a stationary Gaussian process characterized by the Hurst parameter. In the paper, moments based estimators of the Hurst parameter are presented and analyzed with respect to asymptotic variance.
引用
收藏
页码:3823 / 3827
页数:5
相关论文
共 18 条
[1]   SIGNAL-DETECTION IN FRACTIONAL GAUSSIAN-NOISE [J].
BARTON, RJ ;
POOR, HV .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (05) :943-959
[2]  
Biagini F, 2008, PROBAB APPL SER, P1
[3]   SIGNAL MODELING WITH FILTERED DISCRETE FRACTIONAL NOISE PROCESSES [J].
DERICHE, M ;
TEWFIK, AH .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (09) :2839-2849
[4]   MAXIMUM-LIKELIHOOD-ESTIMATION OF THE PARAMETERS OF DISCRETE FRACTIONALLY DIFFERENCED GAUSSIAN-NOISE PROCESS [J].
DERICHE, M ;
TEWFIK, AH .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (10) :2977-2990
[5]   Linear systems with fractional Brownian motion and Gaussian noise [J].
Grigoriu, Mircea .
PROBABILISTIC ENGINEERING MECHANICS, 2007, 22 (03) :276-284
[6]   FRACTAL ESTIMATION FROM NOISY DATA VIA DISCRETE FRACTIONAL GAUSSIAN-NOISE (DFGN) AND THE HAAR BASIS [J].
KAPLAN, LM ;
KUO, CCJ .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (12) :3554-3562
[7]   EXTENDING SELF-SIMILARITY FOR FRACTIONAL BROWNIAN-MOTION [J].
KAPLAN, LM ;
KUO, CCJ .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (12) :3526-3530
[8]   The Hurst phenomenon and fractional Gaussian noise made easy [J].
Koutsoyiannis, D .
HYDROLOGICAL SCIENCES JOURNAL, 2002, 47 (04) :573-595
[9]   Markovian diffusive representation of 1/fα noises and application to fractional stochastic differential models [J].
Levernhe, F ;
Montseny, G ;
Audounet, J .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (02) :414-423
[10]  
Li M, 2009, ELE COM ENG, P34