A novel three-dimensional magnetic particle imaging system based on the frequency mixing for the point-of-care diagnostics

被引:13
作者
Choi, Seung-Min [1 ,2 ]
Jeong, Jae-Chan [1 ]
Kim, Jinsun [1 ]
Lim, Eul-Gyoon [1 ]
Kim, Chang-beom [1 ]
Park, Sang-Jin [3 ]
Song, Dae-Yong [3 ]
Krause, Hans-Joachim [4 ]
Hong, Hyobong [1 ]
Kweon, In So [2 ]
机构
[1] Elect & Telecommun Res Inst ETRI, Artificial Intelligence Res Lab, Daejeon, South Korea
[2] Korea Adv Inst Sci & Technol KAIST, Div Future Vehicle, Daejeon, South Korea
[3] Eulji Univ, Sch Med, Dept Anat & Neurosci, Daejeon, South Korea
[4] Forschungszentrum Julich, Inst Biol Informat Proc, Bioelect IBI 3, Julich, Germany
关键词
MPI; RECONSTRUCTION;
D O I
10.1038/s41598-020-68864-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The magnetic particle imaging (MPI) is a technology that can image the concentrations of the superparamagnetic iron oxide nanoparticles (SPIONs) which can be used in biomedical diagnostics and therapeutics as non-radioactive tracers. We proposed a point-of-care testing MPI system (PoCT-MPI) that can be used for preclinical use for imaging small rodents (mice) injected with SPIONs not only in laboratories, but also at emergency sites far from laboratories. In particular, we applied a frequency mixing magnetic detection method to the PoCT-MPI, and proposed a hybrid field free line generator to reduce the power consumption, size and weight of the system. The PoCT-MPI is 20x33x45 mml:mspace width="0.166667em"mml:mspace cm3 in size and weighs less than 100 kg. It can image a three-dimensional distribution of SPIONs injected into a biosample with less than 120 Wh of power consumption. Its detection limit is 0.13 mml:mspace width="0.166667em"mml:mspace>mu L, 10 mg/mL, 1.3mml:mspace width="0.166667em"mml:mspace mu g (Fe).
引用
收藏
页数:16
相关论文
共 30 条
  • [1] SIMULTANEOUS ALGEBRAIC RECONSTRUCTION TECHNIQUE (SART) - A SUPERIOR IMPLEMENTATION OF THE ART ALGORITHM
    ANDERSEN, AH
    KAK, AC
    [J]. ULTRASONIC IMAGING, 1984, 6 (01) : 81 - 94
  • [2] In vivo multimodal magnetic particle imaging (MPI) with tailored magneto/optical contrast agents
    Arami, Hamed
    Khandhar, Amit P.
    Tomitaka, Asahi
    Yu, Elaine
    Goodwill, Patrick W.
    Conolly, Steven M.
    Krishnan, Kannan M.
    [J]. BIOMATERIALS, 2015, 52 : 251 - 261
  • [3] THE STRONG-FOCUSING SYNCHROTON - A NEW HIGH ENERGY ACCELERATOR
    COURANT, ED
    LIVINGSTON, MS
    SNYDER, HS
    [J]. PHYSICAL REVIEW, 1952, 88 (05): : 1190 - 1196
  • [4] Elaine Y, 2017, THESIS
  • [5] Elias Andrew, 2009, Hematology Am Soc Hematol Educ Program, P720, DOI 10.1182/asheducation-2009.1.720
  • [6] Topology Verification for Isosurface Extraction
    Etiene, Tiago
    Nonato, L. Gustavo
    Scheidegger, Carlos
    Tierny, Julien
    Peters, Thomas J.
    Pascucci, Valerio
    Kirby, Robert M.
    Silva, Claudio T.
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012, 18 (06) : 952 - 965
  • [7] System Characterization of a Highly Integrated Preclinical Hybrid MPI-MRI Scanner
    Franke, Jochen
    Heinen, Ulrich
    Lehr, Heinrich
    Weber, Alexander
    Jaspard, Frederic
    Ruhm, Wolfgang
    Heidenreich, Michael
    Schulz, Volkmar
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (09) : 1993 - 2004
  • [8] Tomographic imaging using the nonlinear response of magnetic particles
    Gleich, B
    Weizenecker, R
    [J]. NATURE, 2005, 435 (7046) : 1214 - 1217
  • [9] Projection X-Space Magnetic Particle Imaging
    Goodwill, Patrick W.
    Konkle, Justin J.
    Zheng, Bo
    Saritas, Emine U.
    Conolly, Steven M.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (05) : 1076 - 1085
  • [10] Graser M, 2019, NAT COMMUN, V10, P1