New perspective on passively quenched single photon avalanche diodes: effect of feedback on impact ionization

被引:12
作者
Ramirez, David A. [1 ,2 ]
Hayat, Majeed M. [1 ,2 ]
Rees, Graham J. [3 ]
Jiang, Xudong [4 ]
Itzler, Mark A. [4 ]
机构
[1] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA
[2] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87131 USA
[3] Univ Sheffield, Dept Elect & Elect Engn, Sheffield S1 3JD, S Yorkshire, England
[4] Princeton Lightwave Inc, Cranbury, NJ 08512 USA
关键词
PHOTODIODES; ANALOG; NOISE; MODE;
D O I
10.1364/OE.20.001512
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Single-photon avalanche diodes (SPADs) are primary devices in photon counting systems used in quantum cryptography, time resolved spectroscopy and photon counting optical communication. SPADs convert each photo-generated electron hole pair to a measurable current via an avalanche of impact ionizations. In this paper, a stochastically self-regulating avalanche model for passively quenched SPADs is presented. The model predicts, in qualitative agreement with experiments, three important phenomena that traditional models are unable to predict. These are: (1) an oscillatory behavior of the persistent avalanche current; (2) an exponential (memoryless) decay of the probability density function of the stochastic quenching time of the persistent avalanche current; and (3) a fast collapse of the avalanche current, under strong feedback conditions, preventing the development of a persistent avalanche current. The model specifically captures the effect of the load's feedback on the stochastic avalanche multiplication, an effect believed to be key in breaking today's counting rate barrier in the 1.55-mu m detection window. (C) 2012 Optical Society of America
引用
收藏
页码:1512 / 1529
页数:18
相关论文
共 26 条
[1]  
Albota M. A., 2002, Lincoln Laboratory Journal, V13, P351
[2]  
[Anonymous], 1972, BRANCHING PROCESSES
[3]  
[Anonymous], 1996, COURSE MODERN ANAL, DOI DOI 10.1017/CBO9780511608759
[4]  
Aull B. F., 2002, Lincoln Laboratory Journal, V13, P335
[5]   LDORA: A novel laser communications receiver array architecture [J].
Boroson, DM ;
Bondurant, RS ;
Murphy, DV .
FREE-SPACE LASER COMMUNICATION TECHNOLOGIES XVI, 2004, 5338 :56-64
[6]   Avalanche photodiodes and quenching circuits for single-photon detection [J].
Cova, S ;
Ghioni, M ;
Lacaita, A ;
Samori, C ;
Zappa, F .
APPLIED OPTICS, 1996, 35 (12) :1956-1976
[7]   AVALANCHE-PHOTODIODE FREQUENCY RESPONSE [J].
EMMONS, RB .
JOURNAL OF APPLIED PHYSICS, 1967, 38 (09) :3705-+
[8]   Exponential time response in analogue and Geiger mode avalanche photodiodes [J].
Groves, C ;
Tan, CH ;
David, JPR ;
Rees, GJ ;
Hayat, MM .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2005, 52 (07) :1527-1534
[9]   MODEL FOR ELECTRICAL BEHAVIOR OF MICROPLASMA [J].
HAITZ, RH .
JOURNAL OF APPLIED PHYSICS, 1964, 35 (05) :1370-&
[10]  
Hayat M. M., 2008, 21 ANN M IEEE LAS EL, P203