SOS1, a genetic locus essential for salt tolerance and potassium acquisition

被引:463
作者
Wu, SJ [1 ]
Ding, L [1 ]
Zhu, JK [1 ]
机构
[1] AUBURN UNIV, DEPT BOT & MICROBIOL, AUBURN, AL 36849 USA
关键词
D O I
10.1105/tpc.8.4.617
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To begin to determine which genes are essential for salt tolerance in higher plants, we identified four salt-hypersensitive mutants of Arabidopsis by using a root-bending assay on NaCl-containing agar plates. These mutants (sos1-1, sos1-2, sos1-3, and sos1-4) are allelic to each other and were caused by single recessive nuclear mutations. The SOS1 gene was mapped to chromosome 2 at 29.5 +/- 6.1 centimorgans. The mutants showed no phenotypic changes except that their growth was > 20 times more sensitive to inhibition by NaCl. Salt hypersensitivity is a basic cellular trait exhibited by the mutants at all developmental stages. The sos1 mutants are specifically hypersensitive to Na+ and Li+. The mutants were unable to grow on media containing low levels (below similar to 1 mM) of potassium. Uptake experiments using Rb-86 showed that sos1 mutants are defective in high-affinity potassium uptake. sos1 plants became deficient in potassium when treated with NaCl. The results demonstrate that potassium acquisition is a critical process for salt tolerance in glycophytic plants.
引用
收藏
页码:617 / 627
页数:11
相关论文
共 41 条
[1]   FUNCTIONAL EXPRESSION OF A PROBABLE ARABIDOPSIS-THALIANA POTASSIUM CHANNEL IN SACCHAROMYCES-CEREVISIAE [J].
ANDERSON, JA ;
HUPRIKAR, SS ;
KOCHIAN, LV ;
LUCAS, WJ ;
GABER, RF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (09) :3736-3740
[2]   ASSIGNMENT OF 30 MICROSATELLITE LOCI TO THE LINKAGE MAP OF ARABIDOPSIS [J].
BELL, CJ ;
ECKER, JR .
GENOMICS, 1994, 19 (01) :137-144
[3]  
Binzel M. L., 1994, Horticultural Reviews, V16, P33, DOI 10.1002/9780470650561.ch2
[4]   MOLECULAR RESPONSES TO WATER-DEFICIT [J].
BRAY, EA .
PLANT PHYSIOLOGY, 1993, 103 (04) :1035-1040
[5]   AN OSMOSENSING SIGNAL TRANSDUCTION PATHWAY IN YEAST [J].
BREWSTER, JL ;
DEVALOIR, T ;
DWYER, ND ;
WINTER, E ;
GUSTIN, MC .
SCIENCE, 1993, 259 (5102) :1760-1763
[6]   AMMONIUM INHIBITION OF ARABIDOPSIS ROOT-GROWTH CAN BE REVERSED BY POTASSIUM AND BY AUXIN RESISTANCE MUTATIONS AUX1, AXR1, AND AXR2 [J].
CAO, YW ;
GLASS, ADM ;
CRAWFORD, NM .
PLANT PHYSIOLOGY, 1993, 102 (03) :983-989
[7]  
Cushman J.C., 1990, ENV INJURY PLANTS, P173
[8]   METHODOLOGY OF GENE-TRANSFER BY HOMOEOLOGOUS RECOMBINATION INTO TRITICUM-TURGIDUM - TRANSFER OF K+/NA+ DISCRIMINATION FROM TRITICUM-AESTIVUM [J].
DVORAK, J ;
GORHAM, J .
GENOME, 1992, 35 (04) :639-646
[9]   RESOLUTION OF DUAL MECHANISMS OF POTASSIUM ABSORPTION BY BARLEY ROOTS [J].
EPSTEIN, E ;
ELZAM, OE ;
RAINS, DW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1963, 49 (05) :684-&
[10]   SALINE CULTURE OF CROPS - A GENETIC APPROACH [J].
EPSTEIN, E ;
NORLYN, JD ;
RUSH, DW ;
KINGSBURY, RW ;
KELLEY, DB ;
CUNNINGHAM, GA ;
WRONA, AF .
SCIENCE, 1980, 210 (4468) :399-404