An atomic-level strategy for the design of a low overpotential catalyst for Li - O2 batteries

被引:70
作者
Kim, Hyung-Jin [1 ,2 ]
Jung, Sung Chul [1 ,2 ]
Han, Young-Kyu [1 ,2 ]
Oh, Si Hyoung [3 ]
机构
[1] Dongguk Univ Seoul, Dept Energy & Mat Engn, Seoul 100715, South Korea
[2] Dongguk Univ Seoul, Adv Energy & Elect Mat Res Ctr, Seoul 100715, South Korea
[3] Korea Inst Sci & Technol, Ctr Energy Convergence Res, Seoul 136791, South Korea
基金
新加坡国家研究基金会;
关键词
Electrocatalyst; Nanoparticle; Li-O-2; battery; Sluggish kinetics; Density functional calculation; OXYGEN REDUCTION REACTION; METAL-AIR BATTERIES; ELECTROCATALYTIC ACTIVITY; ALLOY NANOPARTICLES; LI-O-2; BATTERIES; RATE CAPABILITY; ELECTROCHEMISTRY; SKIN; PT3NI(111); DEPENDENCE;
D O I
10.1016/j.nanoen.2015.03.030
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Herein, we provide critical information via first-principles calculations to solve one of the major problems of Li-O-2 batteries, namely, large overpotentials during the charge-discharge process. First, we found that PtCo exhibits remarkably low oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) overpotentials of 0.19 and 0.20 V, respectively. These are considerably lower than those of pure Pt (1.02 and 1.62V, respectively) and of high-performance Pt3Co (1.02 and 1.13V, respectively). The composition optimization of bimetallic catalysts is therefore critical in developing an optimal Li-O-2 battery catalyst with an overpotential of nearly zero. Second, our calculations demonstrate that replacing the late transition metal Co in Pt3Co with the early transition metal Ti significantly decreases overpotentials, yielding ORR and OER overpotentials of 0.34 and 0.82 V, respectively. These results are opposite to those obtained for fuel cells. Notably, our results suggest that a bimetallic catalyst with poor catalytic activity in fuel cells might show excellent activity in Li-O-2 cells. In particular, combinations of active Pt with early transition metals should be studied for development of bimetallic catalysts with high round-trip efficiency in Li-O-2 batteries. Finally, we suggest that the adsorption energies of Li and LiO2 are critical descriptors of catalytic activity and that they should be used to screen new candidate materials. This is because low ORR and OER overpotentials are closely related to strong Li and weak LiO2 adsorptions, respectively, on the catalytic surface. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:679 / 686
页数:8
相关论文
共 57 条
[1]   A polymer electrolyte-based rechargeable lithium/oxygen battery [J].
Abraham, KM ;
Jiang, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) :1-5
[2]   Current density dependence of peroxide formation in the Li-O2 battery and its effect on charge [J].
Adams, Brian D. ;
Radtke, Claudio ;
Black, Robert ;
Trudeau, Michel L. ;
Zaghib, Karim ;
Nazar, Linda F. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (06) :1772-1778
[3]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[4]   Origin of Oxygen Reduction Reaction Activity on "Pt3Co" Nanoparticles: Atomically Resolved Chemical Compositions and Structures [J].
Chen, Shuo ;
Sheng, Wenchao ;
Yabuuchi, Naoaki ;
Ferreira, Paulo J. ;
Allard, Lawrence F. ;
Shao-Horn, Yang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (03) :1109-1125
[5]   Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts [J].
Cheng, Fangyi ;
Chen, Jun .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (06) :2172-2192
[6]   Ultra-low overpotential and high rate capability in Li-O2 batteries through surface atom arrangement of PdCu nanocatalysts [J].
Choi, Ran ;
Jung, Jaepyeong ;
Kim, Gyubong ;
Song, Kyeongse ;
Kim, Yong-Il ;
Jung, Sung Chul ;
Han, Young-Kyu ;
Song, Hyunjoon ;
Kang, Yong-Mook .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (04) :1362-1368
[7]   Composition-Controlled PtCo Alloy Nanocubes with Tuned Electrocatalytic Activity for Oxygen Reduction [J].
Choi, Sang-Il ;
Lee, Su-Un ;
Kim, Woo Youn ;
Choi, Ran ;
Hong, Kwangwoo ;
Nam, Ki Min ;
Han, Sang Woo ;
Park, Joon T. .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (11) :6228-6234
[8]   Synthesis of Structurally Ordered Pt3Ti and Pt3V Nanoparticles as Methanol Oxidation Catalysts [J].
Cui, Zhiming ;
Chen, Hao ;
Zhao, Mengtian ;
Marshall, Daniel ;
Yu, Yingchao ;
Abruna, Hector ;
DiSalvo, Francis J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (29) :10206-10209
[9]   Trends in the Catalytic Activity of Transition Metals for the Oxygen Reduction Reaction by Lithium [J].
Dathar, Gopi Krishna Phani ;
Shelton, William A. ;
Xu, Ye .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (07) :891-895
[10]   Challenges in the development of advanced Li-ion batteries: a review [J].
Etacheri, Vinodkumar ;
Marom, Rotem ;
Elazari, Ran ;
Salitra, Gregory ;
Aurbach, Doron .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3243-3262