GLOBAL EXISTENCE OF ALMOST ENERGY SOLUTION TO THE TWO-DIMENSIONAL CHEMOTAXIS-NAVIER-STOKES EQUATIONS WITH PARTIAL DIFFUSION

被引:3
作者
Meng, Laiqing [1 ]
Yuan, Jia [1 ]
Zheng, Xiaoxin [1 ]
机构
[1] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Global existence; weak solutions; growth term; Chemotaxis-Navier-Stokes equations; BLOW-UP; EVENTUAL SMOOTHNESS; WELL-POSEDNESS; SYSTEM; MODEL; BOUNDEDNESS; STABILIZATION; AGGREGATION;
D O I
10.3934/dcds.2019141
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study Cauchy problem of the two-dimensional chemotaxis-Navier-Stokes equations with partial diffusion. Taking advantage of a coupling structure of the equations and using the damping effect of the growth term g(n), we obtain the necessary estimates of solution (n, c, u) without the diffusion term Delta n. These uniform estimates enable us to establish the global-in-time existence of almost weak solutions for the system.
引用
收藏
页码:3413 / 3441
页数:29
相关论文
共 50 条
[41]   Global existence of weak solutions for 2D chemotaxis-Navier-Stokes system with fractional diffusion [J].
Zhang, Xuan ;
Lv, Yanxi ;
Zhang, Qian .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (04) :4790-4830
[42]   Partial regularity of suitable weak solution to a three-dimensional fractional parabolic-elliptic chemotaxis-Navier-Stokes system [J].
Lei, Yuzhu ;
Liu, Zuhan ;
Zhou, Ling .
PHYSICA SCRIPTA, 2024, 99 (01)
[43]   Stability of the Couette flow for the two dimensional Chemotaxis-Navier-Stokes system [J].
Ding, Dandan ;
Tan, Zhong .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 77
[44]   Large global solutions to the three dimensional chemotaxis-Navier-Stokes equations slowly varying in one direction [J].
Chen, Qionglei ;
Hao, Xiaonan .
APPLIED MATHEMATICS LETTERS, 2021, 112
[45]   GLOBAL EXISTENCE OF SUITABLE WEAK SOLUTIONS TO THE 3D CHEMOTAXIS-NAVIER-STOKES EQUATIONS [J].
Chen, Xiaomeng ;
Li, Shuai ;
Wang, Lili ;
Wang, Wendong .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2025, 45 (02) :425-479
[46]   Global bounded solution in an attraction repulsion Chemotaxis-Navier-Stokes system with Neumann and Dirichlet boundary conditions [J].
Xu, Luli ;
Mu, Chunlai ;
Zhang, Minghua ;
Zhang, Jing .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 82
[47]   Small-convection limit for two-dimensional chemotaxis-Navier-Stokes system with logarithmic sensitivity and logistic-type source [J].
Wu, Jie .
BOUNDARY VALUE PROBLEMS, 2022, 2022 (01)
[48]   Global weak solutions to a 3-dimensional degenerate and singular chemotaxis-Navier-Stokes system with logistic source [J].
Kurima, Shunsuke ;
Mizukami, Masaaki .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 46 :98-115
[49]   The global solvability of the Cauchy problem for a multi-dimensional chemotaxis-Navier-Stokes system modeling coral fertilization [J].
Xu, Fuyi ;
Huang, Ai ;
Fu, Peng .
JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (03)
[50]   GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR IN A TWO-DIMENSIONAL CHEMOTAXIS SYSTEM WITH ROTATION [J].
Zhang, Yuxin ;
Xu, Yijie ;
Han, Yongjie .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2025, 24 (05) :749-772