GLOBAL EXISTENCE OF ALMOST ENERGY SOLUTION TO THE TWO-DIMENSIONAL CHEMOTAXIS-NAVIER-STOKES EQUATIONS WITH PARTIAL DIFFUSION

被引:3
作者
Meng, Laiqing [1 ]
Yuan, Jia [1 ]
Zheng, Xiaoxin [1 ]
机构
[1] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Global existence; weak solutions; growth term; Chemotaxis-Navier-Stokes equations; BLOW-UP; EVENTUAL SMOOTHNESS; WELL-POSEDNESS; SYSTEM; MODEL; BOUNDEDNESS; STABILIZATION; AGGREGATION;
D O I
10.3934/dcds.2019141
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study Cauchy problem of the two-dimensional chemotaxis-Navier-Stokes equations with partial diffusion. Taking advantage of a coupling structure of the equations and using the damping effect of the growth term g(n), we obtain the necessary estimates of solution (n, c, u) without the diffusion term Delta n. These uniform estimates enable us to establish the global-in-time existence of almost weak solutions for the system.
引用
收藏
页码:3413 / 3441
页数:29
相关论文
共 50 条
[31]   Global well-posedness for the 2D incompressible four-component chemotaxis-Navier-Stokes equations [J].
Zhang, Qian ;
Wang, Peiguang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (02) :1656-1692
[32]   Stabilization in a two-dimensional fractional chemotaxis-Navier-Stokes system with logistic source [J].
Lei, Yuzhu ;
Liu, Zuhan ;
Zhou, Ling .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (09) :10020-10046
[33]   CONVERGENCE RATES OF SOLUTIONS FOR A TWO-DIMENSIONAL CHEMOTAXIS-NAVIER-STOKES SYSTEM [J].
Zhang, Qingshan ;
Li, Yuxiang .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (08) :2751-2759
[34]   Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system [J].
Winkler, Michael .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (05) :1329-1352
[35]   Global solvability in a three-dimensional self-consistent chemotaxis-Navier-Stokes system with porous medium diffusion [J].
Liu, Chao ;
Liu, Bin .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2024, 34 (10) :1825-1860
[36]   Asymptotic profile of a two-dimensional Chemotaxis-Navier-Stokes system with singular sensitivity and logistic source [J].
Pang, Peter Y. H. ;
Wang, Yifu ;
Yin, Jingxue .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (03) :577-618
[37]   Small-mass solutions in a two-dimensional logarithmic Chemotaxis-Navier-Stokes system with indirect nutrient consumption [J].
Huang, Ai ;
Pang, Peter Y. H. ;
Wang, Yifu .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2025, 35 (08) :1681-1716
[38]   Large-time behavior in a two-dimensional logarithmic chemotaxis-Navier-Stokes system with signal absorption [J].
Liu, Ji .
JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (04) :5135-5170
[39]   Global Existence of Weak Solutions for the 2D Incompressible Keller-Segel-Navier-Stokes Equations with Partial Diffusion [J].
Zhao, Jijie ;
Chen, Xiaoyu ;
Zhang, Qian .
ACTA APPLICANDAE MATHEMATICAE, 2022, 181 (01)
[40]   Global (weak) solution of the chemotaxis-Navier-Stokes equations with non-homogeneous boundary conditions and logistic growth [J].
Braukhoff, Marcel .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (04) :1013-1039