GLOBAL EXISTENCE OF ALMOST ENERGY SOLUTION TO THE TWO-DIMENSIONAL CHEMOTAXIS-NAVIER-STOKES EQUATIONS WITH PARTIAL DIFFUSION

被引:3
作者
Meng, Laiqing [1 ]
Yuan, Jia [1 ]
Zheng, Xiaoxin [1 ]
机构
[1] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Global existence; weak solutions; growth term; Chemotaxis-Navier-Stokes equations; BLOW-UP; EVENTUAL SMOOTHNESS; WELL-POSEDNESS; SYSTEM; MODEL; BOUNDEDNESS; STABILIZATION; AGGREGATION;
D O I
10.3934/dcds.2019141
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study Cauchy problem of the two-dimensional chemotaxis-Navier-Stokes equations with partial diffusion. Taking advantage of a coupling structure of the equations and using the damping effect of the growth term g(n), we obtain the necessary estimates of solution (n, c, u) without the diffusion term Delta n. These uniform estimates enable us to establish the global-in-time existence of almost weak solutions for the system.
引用
收藏
页码:3413 / 3441
页数:29
相关论文
共 50 条
[21]   How strongly does diffusion or logistic-type degradation affect existence of global weak solutions in a chemotaxis-Navier-Stokes system? [J].
Mizukami, Masaaki .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (02)
[22]   Global classical solvability and stabilization in a two-dimensional chemotaxis-Navier-Stokes system modeling coral fertilization [J].
Espejo, Elio ;
Winkler, Michael .
NONLINEARITY, 2018, 31 (04) :1227-1259
[23]   Global Existence, Regularity and Boundedness in a Higher-dimensional Chemotaxis-Navier-Stokes System with Nonlinear Diffusion and General Sensitivity [J].
Zheng, Jiashan ;
Qi, Dayong ;
Ke, Yuanyuan .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (04)
[24]   Boundedness in a two-dimensional self-consistent chemotaxis-Navier-Stokes system with nonlinear diffusion [J].
Yu, Zhongqing ;
Li, Yanjiang ;
Dong, Ying .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (05) :5448-5465
[25]   Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with slow p-Laplacian diffusion [J].
Tao, Weirun ;
Li, Yuxiang .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 45 :26-52
[26]   Asymptotic stabilization in a two-dimensional singular chemotaxis-Navier-Stokes system with indirect signal consumption [J].
Dai, Feng ;
Liu, Bin .
ACTA MATHEMATICA SCIENTIA, 2025, 45 (04) :1355-1383
[27]   On the inviscid limit of the three dimensional incompressible chemotaxis-Navier-Stokes equations [J].
Zhang, Qian .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 27 :70-79
[29]   Global existence of weak solutions for the 3D incompressible Keller-Segel-Navier-Stokes equations with partial diffusion [J].
Zhao, Jijie ;
Chen, Xiaoyu ;
Zhang, Qian .
APPLICABLE ANALYSIS, 2024, 103 (01) :353-376
[30]   Global well-posedness of axisymmetric solution to the 3D axisymmetric chemotaxis-Navier-Stokes equations with logistic source [J].
Zhang, Qian ;
Zheng, Xiaoxin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 274 :576-612