GLOBAL EXISTENCE OF ALMOST ENERGY SOLUTION TO THE TWO-DIMENSIONAL CHEMOTAXIS-NAVIER-STOKES EQUATIONS WITH PARTIAL DIFFUSION

被引:3
|
作者
Meng, Laiqing [1 ]
Yuan, Jia [1 ]
Zheng, Xiaoxin [1 ]
机构
[1] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Global existence; weak solutions; growth term; Chemotaxis-Navier-Stokes equations; BLOW-UP; EVENTUAL SMOOTHNESS; WELL-POSEDNESS; SYSTEM; MODEL; BOUNDEDNESS; STABILIZATION; AGGREGATION;
D O I
10.3934/dcds.2019141
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study Cauchy problem of the two-dimensional chemotaxis-Navier-Stokes equations with partial diffusion. Taking advantage of a coupling structure of the equations and using the damping effect of the growth term g(n), we obtain the necessary estimates of solution (n, c, u) without the diffusion term Delta n. These uniform estimates enable us to establish the global-in-time existence of almost weak solutions for the system.
引用
收藏
页码:3413 / 3441
页数:29
相关论文
共 50 条