Shapiro's Theorem for subspaces

被引:5
作者
Almira, J. M. [1 ]
Oikhberg, T. [2 ,3 ]
机构
[1] Univ Jaen, Dept Matemat, EPS Linares, Linares 23700, Jaen, Spain
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
Approximation scheme; Approximation error; Approximation with restrictions; Bernstein's Lethargy Theorem; Shapiro's Theorem; BANACH-SPACES; APPROXIMATION; EXISTENCE;
D O I
10.1016/j.jmaa.2011.09.054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the previous paper (Almira and Oikhberg. 2010 [4]), the authors investigated the existence of an element x of a quasi-Banach space X whose errors of best approximation by a given approximation scheme (A(n)) (defined by E(x, A(n)) = inf(a is an element of An) parallel to x - a(n)parallel to) decay arbitrarily slowly. In this work, we consider the question of whether x witnessing the slowness rate of approximation can be selected in a prescribed subspace of X. In many particular cases, the answer turns out to be positive. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:282 / 302
页数:21
相关论文
共 35 条
[1]  
Albiac F, 2006, GRAD TEXTS MATH, V233, P1
[2]   Generalized approximation spaces and applications [J].
Almira, JM ;
Luther, U .
MATHEMATISCHE NACHRICHTEN, 2004, 263 :3-35
[3]  
Álvarez Hugo, 2007, Rev. Unión Mat. Argent., V48, P1
[4]  
[Anonymous], SURV APPROX THEORY
[5]  
[Anonymous], APPROXIMATION UNPUB
[6]  
[Anonymous], CONTEMP MATH
[7]  
[Anonymous], UCHEN ZAP KALININ GO
[8]  
[Anonymous], 1978, INVESTIGATION FUNCTI
[9]  
[Anonymous], FUNCTIONS BOUNDED VA
[10]  
[Anonymous], SOCHINENIYA