Integral Representations for Harmonic Functions of Infinite Order in a Cone

被引:12
作者
Qiao, Lei [1 ]
机构
[1] Henan Univ Econ & Law, Dept Math & Informat Sci, Zhengzhou 450002, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Integral representation; harmonic function; cone; DIRICHLET;
D O I
10.1007/s00025-010-0076-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A harmonic function of infinite order defined in an n-dimensional cone and continuous in the closure can be represented in terms of the modified Poisson integral and an infinite sum of harmonic polynomials vanishing on the boundary.
引用
收藏
页码:63 / 74
页数:12
相关论文
共 12 条
  • [1] [Anonymous], 1977, Grundlagen der mathematischen Wissenschaften
  • [2] Carleman T., 1923, Ark. Mat. Astron. Fys., V17, P1
  • [3] KERNELS FOR SOLVING PROBLEMS OF DIRICHLET TYPE IN A HALF-PLANE
    FINKELSTEIN, M
    SCHEINBERG, S
    [J]. ADVANCES IN MATHEMATICS, 1975, 18 (01) : 108 - 113
  • [4] GARDINER SJ, 1981, J LOND MATH SOC, V24, P502
  • [5] Integral representations of harmonic functions in half spaces
    Guantie, Deng
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2007, 131 (01): : 53 - 59
  • [6] HAYMAN WK, 1976, SUBHARMONIC FUNCTION, V1
  • [7] Rashkovskii A, 1990, TEOR FUNKTS FUNKTS A, V54, P74
  • [8] Ronkin L. I., 1992, FUNCTIONS COMPLETELY, V81
  • [9] Rosenblum G., 1989, SPECTRAL THEORY DIFF
  • [10] Sharp growth estimates for modified Poisson integrals in a half space
    Siegel, D
    Talvila, E
    [J]. POTENTIAL ANALYSIS, 2001, 15 (04) : 333 - 360