Group field theory and simplicial gravity path integrals: A model for Holst-Plebanski gravity

被引:104
作者
Baratin, Aristide [1 ]
Oriti, Daniele [2 ]
机构
[1] Ecole Polytech, CNRS UMR 7644, Ctr Phys Theor, F-9112 Palaiseau, France
[2] Max Planck Inst Gravitat Phys, D-14467 Golm, Germany
来源
PHYSICAL REVIEW D | 2012年 / 85卷 / 04期
关键词
SPIN NETWORKS; QUANTUM; CONNECTION; VERTEX;
D O I
10.1103/PhysRevD.85.044003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In a recent work, a dual formulation of group field theories as noncommutative quantum field theories has been proposed, providing an exact duality between spin foam models and noncommutative simplicial path integrals for constrained BF theories. In light of this new framework, we define a model for four-dimensional gravity which includes the Immirzi parameter gamma. It reproduces the Barrett-Crane amplitudes when gamma = infinity, but differs from existing models otherwise; in particular, it does not require any rationality condition for gamma. We formulate the amplitudes both as BF simplicial path integrals with explicit noncommutative B variables, and in spin foam form in terms of Wigner 15j symbols. Finally, we briefly discuss the correlation between neighboring simplices, often argued to be a problematic feature, for example, in the Barrett-Crane model.
引用
收藏
页数:15
相关论文
共 62 条
[1]   Plebanski theory and covariant canonical formulation [J].
Alexandrov, S. ;
Buffenoir, E. ;
Roche, Ph .
CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (11) :2809-2824
[2]   SU(2) loop quantum gravity seen from covariant theory -: art. no. 044009 [J].
Alexandrov, S ;
Livine, ER .
PHYSICAL REVIEW D, 2003, 67 (04)
[3]   Spin foam model from canonical quantization [J].
Alexandrov, Sergei .
PHYSICAL REVIEW D, 2008, 77 (02)
[4]   New vertices and canonical quantization [J].
Alexandrov, Sergei .
PHYSICAL REVIEW D, 2010, 82 (02)
[5]   Simplicity and closure constraints in spin foam models of gravity [J].
Alexandrov, Sergei .
PHYSICAL REVIEW D, 2008, 78 (04)
[6]  
[Anonymous], ARXIVGRQC0607032
[7]   Quantum theory of geometry: III. Non-commutativity of Riemannian structures [J].
Ashtekar, A ;
Corichi, A ;
Zapata, JA .
CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (10) :2955-2972
[8]  
Baez J. C., 1999, Adv. Theor. Math. Phys, V3, P815
[9]   Perfect discretization of reparametrization invariant path integrals [J].
Bahr, Benjamin ;
Dittrich, Bianca ;
Steinhaus, Sebastian .
PHYSICAL REVIEW D, 2011, 83 (10)
[10]   Non-commutative flux representation for loop quantum gravity [J].
Baratin, A. ;
Dittrich, B. ;
Oriti, D. ;
Tambornino, J. .
CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (17)