JUNIPR: a framework for unsupervised machine learning in particle physics

被引:98
作者
Andreassen, Anders [1 ]
Feige, Ilya [2 ]
Frye, Christopher [1 ]
Schwartz, Matthew D. [1 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] ASI Data Sci, 54 Welbeck St, London W1G 9XS, England
来源
EUROPEAN PHYSICAL JOURNAL C | 2019年 / 79卷 / 02期
关键词
D O I
10.1140/epjc/s10052-019-6607-9
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In applications of machine learning to particle physics, a persistent challenge is how to go beyond discrimination to learn about the underlying physics. To this end, a powerful tool would be a framework for unsupervised learning, where the machine learns the intricate high-dimensional contours of the data upon which it is trained, without reference to pre-established labels. In order to approach such a complex task, an unsupervised network must be structured intelligently, based on a qualitative understanding of the data. In this paper, we scaffold the neural network's architecture around a leading-order model of the physics underlying the data. In addition to making unsupervised learning tractable, this design actually alleviates existing tensions between performance and interpretability. We call the framework Junipr: Jets from UNsupervised Interpretable PRobabilistic models. In this approach, the set of particle momenta composing a jet are clustered into a binary tree that the neural network examines sequentially. Training is unsupervised and unrestricted: the network could decide that the data bears little correspondence to the chosen tree structure. However, when there is a correspondence, the network's output along the tree has a direct physical interpretation. Junipr models can perform discrimination tasks, through the statistically optimal likelihood-ratio test, and they permit visualizations of discrimination power at each branching in a jet's tree. Additionally, Junipr models provide a probability distribution from which events can be drawn, providing a data-driven Monte Carlo generator. As a third application, Junipr models can reweight events from one (e.g.simulated) data set to agree with distributions from another (e.g.experimental) data set.
引用
收藏
页数:24
相关论文
共 70 条
[11]  
ATLAS Collaboration, 2017, TECHNICAL REPORT
[12]  
ATLAS Collaboration, 2017, ATLPHYSPUB2017017 CE
[13]  
Bahdanau D, 2016, Arxiv, DOI arXiv:1409.0473
[14]  
Bhimji W., 2017, 18 INT WORKSH ADV CO
[15]   The anti-kt jet clustering algorithm [J].
Cacciari, Matteo ;
Salam, Gavin P. ;
Soyez, Gregory .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (04)
[16]   FastJet user manual [J].
Cacciari, Matteo ;
Salam, Gavin P. ;
Soyez, Gregory .
EUROPEAN PHYSICAL JOURNAL C, 2012, 72 (03) :1-54
[17]   LONGITUDINALLY-INVARIANT K-PERPENDICULAR-TO-CLUSTERING ALGORITHMS FOR HADRON-HADRON COLLISIONS [J].
CATANI, S ;
DOKSHITZER, YL ;
SEYMOUR, MH ;
WEBBER, BR .
NUCLEAR PHYSICS B, 1993, 406 (1-2) :187-224
[18]   Performance of τ-lepton reconstruction and identification in CMS [J].
Chatrchyan, S. ;
Khachatryan, V. ;
Sirunyan, A. M. ;
Tumasyan, A. ;
Adam, W. ;
Bergauer, T. ;
Dragicevic, M. ;
Eroe, J. ;
Fabjan, C. ;
Friedl, M. ;
Fruehwirth, R. ;
Ghete, V. M. ;
Hammer, J. ;
Haensel, S. ;
Hoch, M. ;
Hoermann, N. ;
Hrubec, J. ;
Jeitler, M. ;
Kiesenhofer, W. ;
Krammer, M. ;
Liko, D. ;
Mikulec, I. ;
Pernicka, M. ;
Rahbaran, B. ;
Rohringer, H. ;
Schoefbeck, R. ;
Strauss, J. ;
Taurok, A. ;
Teischinger, F. ;
Trauner, C. ;
Wagner, P. ;
Waltenberger, W. ;
Walzel, G. ;
Widl, E. ;
Wulz, C. -E. ;
Mossolov, V. ;
Shumeiko, N. ;
Gonzalez, J. Suarez ;
Bansal, S. ;
Benucci, L. ;
De Wolf, E. A. ;
Janssen, X. ;
Luyckx, S. ;
Maes, T. ;
Mucibello, L. ;
Ochesanu, S. ;
Roland, B. ;
Rougny, R. ;
Selvaggi, M. ;
Van Haevermaet, H. .
JOURNAL OF INSTRUMENTATION, 2012, 7
[19]  
Cheng T., ARXIV171102633
[20]  
Cho K, 2014, ARXIV14061078