JUNIPR: a framework for unsupervised machine learning in particle physics

被引:98
作者
Andreassen, Anders [1 ]
Feige, Ilya [2 ]
Frye, Christopher [1 ]
Schwartz, Matthew D. [1 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] ASI Data Sci, 54 Welbeck St, London W1G 9XS, England
来源
EUROPEAN PHYSICAL JOURNAL C | 2019年 / 79卷 / 02期
关键词
D O I
10.1140/epjc/s10052-019-6607-9
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In applications of machine learning to particle physics, a persistent challenge is how to go beyond discrimination to learn about the underlying physics. To this end, a powerful tool would be a framework for unsupervised learning, where the machine learns the intricate high-dimensional contours of the data upon which it is trained, without reference to pre-established labels. In order to approach such a complex task, an unsupervised network must be structured intelligently, based on a qualitative understanding of the data. In this paper, we scaffold the neural network's architecture around a leading-order model of the physics underlying the data. In addition to making unsupervised learning tractable, this design actually alleviates existing tensions between performance and interpretability. We call the framework Junipr: Jets from UNsupervised Interpretable PRobabilistic models. In this approach, the set of particle momenta composing a jet are clustered into a binary tree that the neural network examines sequentially. Training is unsupervised and unrestricted: the network could decide that the data bears little correspondence to the chosen tree structure. However, when there is a correspondence, the network's output along the tree has a direct physical interpretation. Junipr models can perform discrimination tasks, through the statistically optimal likelihood-ratio test, and they permit visualizations of discrimination power at each branching in a jet's tree. Additionally, Junipr models provide a probability distribution from which events can be drawn, providing a data-driven Monte Carlo generator. As a third application, Junipr models can reweight events from one (e.g.simulated) data set to agree with distributions from another (e.g.experimental) data set.
引用
收藏
页数:24
相关论文
共 70 条
[1]   Performance of b-jet identification in the ATLAS experiment [J].
Aad, G. ;
Abbott, B. ;
Abdallah, J. ;
Abdinov, O. ;
Aben, R. ;
Abolins, M. ;
AbouZeid, O. S. ;
Abramowicz, H. ;
Abreu, H. ;
Abreu, R. ;
Abulaiti, Y. ;
Acharya, B. S. ;
Adamczyk, L. ;
Adams, D. L. ;
Adelman, J. ;
Adomeit, S. ;
Adye, T. ;
Affolder, A. A. ;
Agatonovic-Jovin, T. ;
Aguilar-Saavedra, J. A. ;
Ahlen, S. P. ;
Ahmadov, F. ;
Aielli, G. ;
Akerstedt, H. ;
Akesson, T. P. A. ;
Akimoto, G. ;
Akimov, A. V. ;
Alberghi, G. L. ;
Albert, J. ;
Albrand, S. ;
Alconada Verzini, M. J. ;
Aleksa, M. ;
Aleksandrov, I. N. ;
Alexa, C. ;
Alexander, G. ;
Alexopoulos, T. ;
Alhroob, M. ;
Alimonti, G. ;
Alio, L. ;
Alison, J. ;
Alkire, S. P. ;
Allbrooke, B. M. M. ;
Allport, P. P. ;
Aloisio, A. ;
Alonso, A. ;
Alonso, F. ;
Alpigiani, C. ;
Altheimer, A. ;
Gonzalez, B. Alvarez ;
Alvarez Piqueras, D. .
JOURNAL OF INSTRUMENTATION, 2016, 11
[2]   A neural network clustering algorithm for the ATLAS silicon pixel detector [J].
Aad, G. ;
Abbott, B. ;
Abdallah, J. ;
Khalek, S. Abdel ;
Abdinov, O. ;
Aben, R. ;
Abi, B. ;
Abolins, M. ;
AbouZeid, O. S. ;
Abramowicz, H. ;
Abreu, H. ;
Abreu, R. ;
Abulaitia, Y. ;
Acharya, B. S. ;
Adamczyka, L. ;
Adams, D. L. ;
Adelman, J. ;
Adomeit, S. ;
Adye, T. ;
Agatonovic-Jovin, T. ;
Aguilar-Saavedra, J. A. ;
Agustoni, M. ;
Ahlen, S. P. ;
Ahmadov, F. ;
Aielli, G. ;
Akerstedt, H. ;
Akesson, T. P. A. ;
Akimoto, G. ;
Akimov, A. V. ;
Alberghi, G. L. ;
Albert, J. ;
Albrand, S. ;
Verzini, M. J. Alconada ;
Aleksa, M. ;
Aleksandrov, I. N. ;
Alexa, C. ;
Alexander, G. ;
Alexandre, G. ;
Alexopoulos, T. ;
Alhroob, M. ;
Alimonti, G. ;
Alio, L. ;
Alison, J. ;
Allbrooke, B. M. M. ;
Allison, L. J. ;
Allport, P. P. ;
Almond, J. ;
Aloisio, A. ;
Alonso, A. ;
Alonso, F. .
JOURNAL OF INSTRUMENTATION, 2014, 9
[3]  
Al-Rfou R., 2016, Theano: A python framework for fast computation of mathematical expressions
[4]  
[Anonymous], ARXIV180300107
[5]  
[Anonymous], ARXIV180308066
[6]  
[Anonymous], ARXIV170708966
[7]  
[Anonymous], ARXIV171109059
[8]  
[Anonymous], ARXIV180303589
[9]  
[Anonymous], ARXIV171111041
[10]  
ATLAS Collaboration, 2017, ATLPHYSPUB2017003 CE