Shrinkage and pretest estimators for longitudinal data analysis under partially linear models

被引:10
|
作者
Hossain, S. [1 ]
Ahmed, S. Ejaz [2 ]
Yi, Grace Y. [3 ]
Chen, B. [4 ]
机构
[1] Univ Winnipeg, Dept Math & Stat, Winnipeg, MB, Canada
[2] Brock Univ, Dept Math & Stat, St Catharines, ON, Canada
[3] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON, Canada
[4] Univ Nebraska Med Ctr, Dept Biostat, Omaha, NE USA
基金
加拿大自然科学与工程研究理事会;
关键词
asymptotic bias and risk; likelihood ratio test; longitudinal data; pretest and shrinkageestimators; partially linear model; VARIABLE SELECTION; REGRESSION-MODELS; CLUSTERED DATA; BINARY DATA; LIKELIHOOD; PENALTY;
D O I
10.1080/10485252.2016.1190358
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we develop marginal analysis methods for longitudinal data under partially linear models. We employ the pretest and shrinkage estimation procedures to estimate the mean response parameters as well as the association parameters, which may be subject to certain restrictions. We provide the analytic expressions for the asymptotic biases and risks of the proposed estimators, and investigate their relative performance to the unrestricted semiparametric least-squares estimator (USLSE). We show that if the dimension of association parameters exceeds two, the risk of the shrinkage estimators is strictly less than that of the USLSE in most of the parameter space. On the other hand, the risk of the pretest estimator depends on the validity of the restrictions of association parameters. A simulation study is conducted to evaluate the performance of the proposed estimators relative to that of the USLSE. A real data example is applied to illustrate the practical usefulness of the proposed estimation procedures.
引用
收藏
页码:531 / 549
页数:19
相关论文
共 50 条
  • [1] Pretest and shrinkage estimators in generalized partially linear models with application to real data
    Hossain, Shakhawat
    Mandal, Saumen
    Le An Lac
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2023, 51 (04): : 975 - 1003
  • [2] Shrinkage, pretest and absolute penalty estimators in partially linear models
    Ahmed, S. Ejaz
    Doksum, Kjell A.
    Hossain, S.
    You, Jinhong
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2007, 49 (04) : 435 - 454
  • [3] Positive shrinkage, improved pretest and absolute penalty estimators in partially linear models
    Hossain, S.
    Doksum, Kjell A.
    Ahmed, S. Ejaz
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (10) : 2749 - 2761
  • [4] Shrinkage, pretest, and penalty estimators in generalized linear models
    Hossain, Shakhawat
    Ahmed, S. Ejaz
    Doksum, Kjell A.
    STATISTICAL METHODOLOGY, 2015, 24 : 52 - 68
  • [5] Shrinkage and pretest Liu estimators in semiparametric linear measurement error models
    Emami, Hadi
    Khademnoe, Omid
    STATISTICAL PAPERS, 2025, 66 (02)
  • [6] Ridge-type pretest and shrinkage estimations in partially linear models
    Yuzbasi, Bahadir
    Ahmed, S. Ejaz
    Aydin, Dursun
    STATISTICAL PAPERS, 2020, 61 (02) : 869 - 898
  • [7] Ridge-type pretest and shrinkage estimations in partially linear models
    Bahadır Yüzbaşı
    S. Ejaz Ahmed
    Dursun Aydın
    Statistical Papers, 2020, 61 : 869 - 898
  • [8] Analysis of asynchronous longitudinal data with partially linear models
    Chen, Li
    Cao, Hongyuan
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (01): : 1549 - 1569
  • [9] Penalty, post pretest and shrinkage strategies in a partially linear model
    Phukongtong, Siwaporn
    Lisawadi, Supranee
    Ahmed, S. Ejaz
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (10) : 6004 - 6025
  • [10] Strong consistency of estimators in partially linear models for longitudinal data with mixing-dependent structure
    Zhou, Xing-cai
    Lin, Jin-guan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,