Thermal Degradation of Solid Electrolyte Interphase (SEI) Layers by Phosphorus Pentafluoride (PF5) Attack

被引:47
作者
Kim, Jongjung [1 ,2 ]
Lee, Jae Gil [1 ,2 ]
Kim, Hyun-seung [1 ,2 ]
Lee, Tae Jin [1 ,2 ]
Park, Hosang [1 ,2 ]
Ryu, Ji Heon [3 ]
Oh, Seung M. [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Chem & Biol Engn, Seoul 151744, South Korea
[2] Seoul Natl Univ, Inst Chem Proc, Seoul 151744, South Korea
[3] Korea Polytech Univ, Grad Sch Knowledge Based Technol & Energy, Siheung Si, South Korea
基金
新加坡国家研究基金会;
关键词
LI-ION BATTERIES; PHOTOELECTRON-SPECTROSCOPY; CARBON ELECTRODES; LITHIUM BATTERIES; GRAPHITE; STABILITY; INTERFACE; BEHAVIOR; IDENTIFICATION; CALORIMETRY;
D O I
10.1149/2.0761712jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Thermal degradation mechanisms of solid electrolyte interphases (SEIs) on graphite and SiO electrodes are examined at moderately elevated temperatures (60-130 degrees C). Of the two possible degradationmechanisms, the attack of phosphorus pentafluoride (PF5), which is generated by thermal decomposition of lithium hexafluorophosphate (LiPF6) used as the lithium salt, dominates over the thermal decomposition of the SEI layer itself over this temperature range. Once the SEI layer is damaged, electrolyte decomposition and film deposition takes place on the newly exposed electrode surfaces due to the loss of passivating ability; this is a repair process for the damaged SEI. Such damage/repair of the SEI layer continues until the Li+ ions/electrons are exhausted from the negative electrodes. An undesired feature of this process is the steady increase in SEI thickness, which causes electrode polarization and eventual capacity fading. (C) 2017 The Electrochemical Society. All rights reserved.
引用
收藏
页码:A2418 / A2425
页数:8
相关论文
共 25 条
[1]   Temperature dependence of the passivation layer on graphite [J].
Andersson, AM ;
Edström, K ;
Rao, N ;
Wendsjö, Å .
JOURNAL OF POWER SOURCES, 1999, 81 :286-290
[2]   Characterisation of the ambient and elevated temperature performance of a graphite electrode [J].
Andersson, AM ;
Edström, K ;
Thomas, JO .
JOURNAL OF POWER SOURCES, 1999, 81 :8-12
[3]   Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries [J].
Campion, CL ;
Li, WT ;
Lucht, BL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (12) :A2327-A2334
[4]  
CHUSID O, 1993, J POWER SOURCES, V43, P47, DOI 10.1016/0378-7753(93)80101-T
[5]   Characterization of lithium alkyl carbonates by X-ray photoelectron spectroscopy:: Experimental and theoretical study [J].
Dedryvère, R ;
Gireaud, L ;
Grugeon, S ;
Laruelle, S ;
Tarascon, JM ;
Gonbeau, D .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (33) :15868-15875
[6]   XPS identification of the organic and inorganic components of the electrode/electrolyte interface formed on a metallic cathode [J].
Dedryvère, R ;
Laruelle, S ;
Grugeon, S ;
Gireaud, L ;
Tarascon, JM ;
Gonbeau, D .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (04) :A689-A696
[7]  
Du Pasquier A, 1998, J ELECTROCHEM SOC, V145, P472
[8]   STUDIES OF LITHIUM INTERCALATION INTO CARBONS USING NONAQUEOUS ELECTROCHEMICAL-CELLS [J].
FONG, R ;
VONSACKEN, U ;
DAHN, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (07) :2009-2013
[9]   Aging investigations of a lithium-ion battery electrolyte from a field-tested hybrid electric vehicle [J].
Gruetzke, Martin ;
Kraft, Vadim ;
Hoffmann, Bjoern ;
Klamor, Sebastian ;
Diekmann, Jan ;
Kwade, Arno ;
Winter, Martin ;
Nowak, Sascha .
JOURNAL OF POWER SOURCES, 2015, 273 :83-88
[10]   An interface clusters mixture model for the structure of amorphous silicon monoxide (SiO) [J].
Hohl, A ;
Wieder, T ;
van Aken, PA ;
Weirich, TE ;
Denninger, G ;
Vidal, M ;
Oswald, S ;
Deneke, C ;
Mayer, J ;
Fuess, H .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2003, 320 (1-3) :255-280