The GPL-stability of Rosenbrock methods for delay differential equation

被引:6
作者
Cong, YH [1 ]
Cai, JN [1 ]
Kuang, JX [1 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
基金
中国国家自然科学基金;
关键词
delay differential equation; Rosenbrock method; GPL-stability;
D O I
10.1016/S0096-3003(03)00289-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the stability analysis of the Rosenbrock method for the numerical solution of delay differential equation. The stability behavior of Rosenbrock method is analyzed for the solutions of linear test equation. We will give that the Rosenbrock method is GPL-stable if and only if it is L-stable. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:533 / 542
页数:10
相关论文
共 19 条
[1]  
[Anonymous], ANN NUMER MATH
[2]  
Barwell V. K., 1975, BIT (Nordisk Tidskrift for Informationsbehandling), V15, P130, DOI 10.1007/BF01932685
[3]   STABILITY ANALYSIS OF ONE-STEP METHODS FOR NEUTRAL DELAY-DIFFERENTIAL EQUATIONS [J].
BELLEN, A ;
JACKIEWICZ, Z ;
ZENNARO, M .
NUMERISCHE MATHEMATIK, 1988, 52 (06) :605-619
[4]  
Cao Xue-nian, 2002, Journal of System Simulation, V14, P290
[5]   The first ladder-like lanthanide double chain complex [Tm(NTA) (H2O)2]•2H2O (H3NTA = nitrilotriacetic acid) [J].
Chen, Y ;
Ma, BQ ;
Liu, QD ;
Li, JR ;
Gao, S .
INORGANIC CHEMISTRY COMMUNICATIONS, 2000, 3 (06) :319-321
[6]  
Hairer E., 2000, SOLVING ORDINARY DIF, Vsecond
[7]   Stability analysis of numerical methods for systems of neutral delay-differential equations [J].
Hu, GD ;
Mitsui, T .
BIT, 1995, 35 (04) :504-515
[8]   Stability and error analysis of one-leg methods for nonlinear delay differential equations [J].
Huang, CM ;
Li, SF ;
Fu, HY ;
Chen, GN .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 103 (02) :263-279
[9]   A STABILITY PROPERTY OF A-STABLE NATURAL RUNGE-KUTTA METHODS FOR SYSTEMS OF DELAY-DIFFERENTIAL EQUATIONS [J].
KOTO, T .
BIT NUMERICAL MATHEMATICS, 1994, 34 (02) :262-267
[10]  
Kuang J. X., 1997, Mathematica Numerica Sinica-Chinese Edition, V2, P135