Combating open circuit voltage loss in Sb2Se3 solar cell with an application of SnS as a back surface field layer

被引:27
|
作者
Karade, Vijay C. [1 ,2 ]
Jang, Jun Sung [1 ,2 ]
Kumbhar, Dhananjay [3 ]
Rao, Manusha [3 ]
Pawar, Pravin S. [1 ,2 ]
Kim, Sugil [1 ,2 ]
Gour, Kuldeep Singh [1 ,2 ]
Park, Jongsung [1 ,2 ,4 ]
Heo, Jaeyeong [1 ,2 ]
Dongale, Tukaram D. [3 ]
Kim, Jin Hyeok [1 ,2 ]
机构
[1] Chonnam Natl Univ, Optoelect Convergence Res Ctr, Gwangju 61186, South Korea
[2] Chonnam Natl Univ, Dept Mat Sci & Engn, Gwangju 61186, South Korea
[3] Shivaji Univ, Sch Nanosci & Biotechnol, Computat Elect & Nanosci Res Lab, Kolhapur 416004, Maharashtra, India
[4] Gyeongsang Natl Univ, Dept Energy Engn, Jinju 52849, South Korea
关键词
Solar cell; Sb2Se3; BSF layer; SnS; SCAP-1D simulation; THIN-FILM SB2SE3; EFFICIENCY; ENHANCEMENT; PERFORMANCE; DESIGN; POWER;
D O I
10.1016/j.solener.2022.01.010
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Recently, Sb2Se3 based solar cells have shown severe open-circuit voltage (V-OC) loss that results in low device efficiency. In the present work, a model of Sb2Se3 solar cell with tin sulfide (SnS) as a back surface field layer (BSF) layer was designed and investigated via a solar cell capacitance simulator (SCAPS)-1D simulation software. The influence of the ultrathin BSF layer was investigated as a function of Sb2Se3 absorber thickness, and the corresponding device performance was analyzed. Apart from this, the effect of high BSF layer thickness, doping concentration, interface defect density, and resistance were also examined. Applying the BSF layer decreased the valence band offset value, which eases the hole transport at the back interface. At the same time, the high electric field region generated at the back interface creates a barrier for the minority carriers. Synergistically, in the presence of the BSF layer, the carrier recombination current densities were found to be almost negligible. As a result, the introduction of the 10 nm thin BSF layer significantly improved the device's V-OC and power conversion efficiency (PCE) from 0.416 to 0.603 V and 9.61 to 17.75%, respectively for the absorber layer thickness of 700 nm. The present simulation study performed with the full earth-abundant element-based low-cost materials may assist the photovoltaic community in combating the V-OC loss and further improving the PCE of Sb2Se3 based solar cells.
引用
收藏
页码:435 / 445
页数:11
相关论文
共 50 条
  • [21] Modeling a tandem solar cell based on Sb2S3 and Sb2Se3 absorber layers
    Hajjiah, Ali
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2024, 303
  • [22] Performance investigation of Sb2Se3 based solar cell by device optimization, band offset engineering and Hole Transport Layer in SCAPS-1D
    Baig, Faisal
    Khattak, Yousaf Hameed
    Shuja, Ahmed
    Riaz, Kashif
    Mari Soucase, Bernabe
    CURRENT APPLIED PHYSICS, 2020, 20 (08) : 973 - 981
  • [23] Performance enhancement of Cu2ZnSn(S,Se)4 solar cell by inserting Sb and Sb2Se3 doping layer at the bottom of CZTS precursor
    Sun, Luanhong
    Shen, Honglie
    Yang, Jinghe
    Huang, Hulin
    Raza, Adil
    Zhao, Qichen
    MATERIALS RESEARCH EXPRESS, 2019, 6 (12)
  • [24] Magnetron sputtered ZnO buffer layer for Sb2Se3 thin film solar cells
    Wen, Xixing
    He, Yisu
    Chen, Chao
    Liu, Xinsheng
    Wang, Liang
    Yang, Bo
    Leng, Meiying
    Song, Huaibing
    Zeng, Kai
    Li, Dengbing
    Li, Kanghua
    Gao, Liang
    Tang, Jiang
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 172 : 74 - 81
  • [25] Optical loss analysis of Sb2S3 and Sb2Se3 thin film solar cells: A Quantitative Assessment
    Hajjiah, Ali
    PHYSICA SCRIPTA, 2023, 98 (12)
  • [26] Exploring of inorganic Cu-based back surface field layer on the performance of Sb2Se3/WO3 heterojunction solar cells: A SCAPS-1D simulation study
    Al-Buzayd, Hasan Yousif Hashim
    Bahrami, Amir
    INORGANIC CHEMISTRY COMMUNICATIONS, 2025, 173
  • [27] All-Electrochemically Grown Sb2Se3/a-MoSx Photocathodes for Hydrogen Production: The Effect of the MoSx Layer on the Surface Recombination and Photocorrosion of Sb2Se3 Films
    Costa, Magno B.
    Lucas, Francisco W. S.
    Medina, Marina
    Mascaro, Lucia H.
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (10): : 9799 - 9808
  • [28] Simulation Analysis of Sb2Se3 Narrow Bandgap Hole Transport Layer in MAPbI3 Perovskite Solar Cells
    Wu, Jing
    Zhao, Zhengyang
    Zhao, Zimeng
    Zhang, Min
    Bi, Yuying
    Li, Xibin
    Zhang, Linrui
    JOURNAL OF ELECTRONIC MATERIALS, 2025, 54 (05) : 3910 - 3923
  • [29] Promising Sb2(S,Se)3 Solar Cells with High Open Voltage by Application of a TiO2/CdS Double Buffer Layer
    Wang, Weihuang
    Wang, Xiaomin
    Chen, Guilin
    Chen, Binwen
    Cai, Huiling
    Chen, Tao
    Chen, Shuiyuan
    Huang, Zhigao
    Zhu, Changfei
    Zhang, Yi
    SOLAR RRL, 2018, 2 (11):
  • [30] Enhancing efficiency of Sb2Se3 solar cell through optimized optical and electrical properties with Bi-layer absorber
    Chaudhary, Pooja
    Chauhan, R. K.
    Mishra, Rajan
    PHYSICA SCRIPTA, 2024, 99 (07)