Stochastic Lohe Matrix Model on the Lie Group and Mean-Field Limit

被引:4
作者
Kim, Dohyun [1 ]
Kim, Jeongho [2 ]
机构
[1] Natl Inst Math Sci, 70,Yuseong Daero 1689 Beon Gil, Daejeon 34047, South Korea
[2] Seoul Natl Univ, Inst New Media & Commun, Seoul 08826, South Korea
关键词
Lohe matrix model; Mean-field limit; Stability; Stochastic process; EMERGENT BEHAVIOR; SYNCHRONIZATION; DYNAMICS; OSCILLATORS; PARTICLES; STABILITY;
D O I
10.1007/s10955-020-02516-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a Lohe matrix model in a random environment where each oscillator can be regarded as an element of a general matrix Lie group G. In order to make the stochastic system stays on G for all time, we introduce suitable noise terms so that the underlying manifold G is positively invariant under the stochastic system. Then, we formally derive the Fokker-Planck type equation defined on Gxg\$$G\times \mathfrak {g}$$\end{document} in which gdenotes the Lie algebra corresponding to G. After identifying the target Fokker-Planck equation, we especially consider the unitary group G=U(d)$$G=\mathbf {U}(d)$$\end{document} and show that the equation on U(d)$$\mathbf {U}(d)$$\end{document} admits a global unique solution and that it can be rigorously derived using a stochastic mean-field limit procedure with a convergence rate of order O(1/N). Finally, we restrict our concern to G=SU(2)$$G=\mathbf {SU}(2)$$\end{document} to provide explicit calculation and present the nonlinear stability of an incoherent state for the Fokker-Planck equation depending on the relation between parameters.
引用
收藏
页码:1467 / 1514
页数:48
相关论文
共 37 条
[1]   Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises [J].
Ahn, Shin Mi ;
Ha, Seung-Yeal .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (10)
[2]   Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives [J].
Albi, G. ;
Bellomo, N. ;
Fermo, L. ;
Ha, S. -Y. ;
Kim, J. ;
Pareschi, L. ;
Poyato, D. ;
Soler, J. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (10) :1901-2005
[3]   STOCHASTIC MEAN-FIELD LIMIT: NON-LIPSCHITZ FORCES AND SWARMING [J].
Bolley, Francois ;
Canizo, Jose A. ;
Carrillo, Jose A. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (11) :2179-2210
[4]   Mean-field limit for the stochastic Vicsek model [J].
Bolley, Francois ;
Canizo, Jose A. ;
Carrillo, Jose A. .
APPLIED MATHEMATICS LETTERS, 2012, 25 (03) :339-343
[5]   BIOLOGY OF SYNCHRONOUS FLASHING OF FIREFLIES [J].
BUCK, J ;
BUCK, E .
NATURE, 1966, 211 (5049) :562-&
[6]   STOCHASTIC CUCKER-SMALE MODELS: OLD AND NEW [J].
Cattiaux, Patrick ;
Delebecque, Fanny ;
Pedeches, Laure .
ANNALS OF APPLIED PROBABILITY, 2018, 28 (05) :3239-3286
[7]   Emergent behaviors of a holonomic particle system on a sphere [J].
Chi, Dongpyo ;
Choi, Sun-Ho ;
Ha, Seung-Yeal .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (05)
[8]   Emergent Behaviors of Quantum Lohe Oscillators with All-to-All Coupling [J].
Choi, Sun-Ho ;
Ha, Seung-Yeal .
JOURNAL OF NONLINEAR SCIENCE, 2015, 25 (06) :1257-1283
[9]   Complete Entrainment of Lohe Oscillators under Attractive and Repulsive Couplings [J].
Choi, Sun-Ho ;
Ha, Seung-Yeal .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2014, 13 (04) :1417-1441
[10]  
Choi YP, 2017, MODEL SIMUL SCI ENG, P299