Kolmogorov equation associated to the stochastic reflection problem on a smooth convex set of a Hilbert space II

被引:13
作者
Barbu, Viorel [1 ,2 ]
Da Prato, Giuseppe [3 ]
Tubaro, Luciano [4 ]
机构
[1] Alexandru Ioan Cuza Univ, Iasi 700506, Romania
[2] Inst Math Octav Mayer, Iasi 700506, Romania
[3] Scuola Normale Super Pisa, I-56126 Pisa, Italy
[4] Univ Trento, Dept Math, I-38050 Povo, Trento, Italy
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2011年 / 47卷 / 03期
关键词
Neumann problem; Ornstein-Uhlenbeck operator; Kolmogorov operator; Reflection problem; Infinite-dimensional analysis; SPDES;
D O I
10.1214/10-AIHP381
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This work is concerned with the existence and regularity of solutions to the Neumann problem associated with a Ornstein-Uhlenbeck operator on a bounded and smooth convex set K of a Hilbert space H. This problem is related to the reflection problem associated with a stochastic differential equation in K.
引用
收藏
页码:699 / 724
页数:26
相关论文
共 16 条
[1]   Existence and stability for Fokker-Planck equations with log-concave reference measure [J].
Ambrosio, Luigi ;
Savare, Giuseppe ;
Zambotti, Lorenzo .
PROBABILITY THEORY AND RELATED FIELDS, 2009, 145 (3-4) :517-564
[2]  
[Anonymous], 1998, GAUSSIAN MEASURES
[3]  
[Anonymous], 2002, LONDON MATH SOC LECT
[4]   The Neumann problem on unbounded domains of Rd and stochastic variational inequalities [J].
Barbu, V ;
Da Prato, G .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (08) :1217-1248
[5]   The generator of the transition semigroup corresponding to a stochastic variational inequality [J].
Barbu, Viorel ;
Da Prato, Giuseppe .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (07) :1318-1338
[6]   KOLMOGOROV EQUATION ASSOCIATED TO THE STOCHASTIC REFLECTION PROBLEM ON A SMOOTH CONVEX SET OF A HILBERT SPACE [J].
Barbu, Viorel ;
Da Prat, Giuseppe ;
Tubaro, Luciano .
ANNALS OF PROBABILITY, 2009, 37 (04) :1427-1458
[7]   Multivalued Skorohod problem [J].
Cepa, E .
ANNALS OF PROBABILITY, 1998, 26 (02) :500-532
[8]   Elliptic operators with unbounded drift coefficients and Neumann boundary condition [J].
Da Prato, G ;
Lunardi, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 198 (01) :35-52
[9]  
Da Prato G., 1996, LONDON MATH SOC LECT, V229
[10]  
DAPRATO G, 2004, AD CO MATH, pR9