Hydrodynamics of Porous Medium Model with Slow Reservoirs

被引:8
作者
Bonorino, L. [1 ]
de Paula, R. [2 ]
Goncalves, P. [2 ]
Neumann, A. [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Inst Matemat & Estat, Campus Vale,Av Bento Goncalves 9500, BR-91509900 Porto Alegre, RS, Brazil
[2] Univ Lisbon, Ctr Math Anal Geometry & Dynam Syst, Inst Super Tecn, Av Rovisco Pais, P-1049001 Lisbon, Portugal
基金
欧洲研究理事会;
关键词
Porous medium model; Hydrodynamic limit; Porous medium equation; Boundary conditions; DIFFUSION; DYNAMICS; SYSTEM; LIMIT;
D O I
10.1007/s10955-020-02550-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze the hydrodynamic behavior of the porous medium model (PMM) in a discrete space {0, horizontal ellipsis ,n}, where the sites 0 and n stand for reservoirs. Our strategy relies on the entropy method of Guo et al. (Commun Math Phys 118:31-59, 1988). However, this method cannot be straightforwardly applied, since there are configurations that do not evolve according to the dynamics (blocked configurations). In order to avoid this problem, we slightly perturbed the dynamics in such a way that the macroscopic behavior of the system keeps following the porous medium equation (PME), but with boundary conditions which depend on the reservoirs' strength.
引用
收藏
页码:748 / 788
页数:41
相关论文
共 23 条
[1]   Exclusion Process with Slow Boundary [J].
Baldasso, Rangel ;
Menezes, Otavio ;
Neumann, Adriana ;
Souza, Rafael R. .
JOURNAL OF STATISTICAL PHYSICS, 2017, 167 (05) :1112-1142
[2]   Production of exotic charmonium in ultra-peripheral heavy ion collisions [J].
Bertulani, C. A. ;
Goncalves, V. P. ;
Moreira, B. D. ;
Navarra, F. S. .
XIITH QUARK CONFINEMENT AND THE HADRON SPECTRUM, 2017, 137
[3]   Convergence to the stochastic Burgers equation from a degenerate microscopic dynamics [J].
Blondel, Oriane ;
Goncalves, Patricia ;
Simon, Marielle .
ELECTRONIC JOURNAL OF PROBABILITY, 2016, 21
[4]   Kinetically Constrained Lattice Gases [J].
Cancrini, N. ;
Martinelli, F. ;
Roberto, C. ;
Toninelli, C. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 297 (02) :299-344
[5]  
de Paula R, 2018, POROUS MEDIUM MODEL, P123
[6]   EXACT SOLUTION OF A 1D ASYMMETRIC EXCLUSION MODEL USING A MATRIX FORMULATION [J].
DERRIDA, B ;
EVANS, MR ;
HAKIM, V ;
PASQUIER, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (07) :1493-1517
[7]  
Ekhaus M, 1996, ANN ACAD SCI FENN-M, V21, P309
[8]  
Evans L. C., 2022, Graduate Studies in Mathematics, V19
[9]   A microscopic mechanism for the porous medium equation [J].
Feng, S ;
Iscoe, I ;
Seppalainen, T .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1997, 66 (02) :147-182
[10]  
Filo J., 1988, MATH SLOVACA, V38, P273