共 43 条
Clock Genes and Cancer
被引:66
作者:
Wood, Patricia A.
[1
]
Yang, Xiaoming
[1
]
Hrushesky, William J. M.
[1
]
机构:
[1] Univ S Carolina, Med Chronobiol Lab, WJB Dorn VA Med Ctr, Sch Med, Columbia, SC 29209 USA
基金:
美国国家卫生研究院;
关键词:
circadian;
neoplasm;
colon cancer;
polyps;
Period genes;
beta-catenin;
CIRCADIAN CLOCK;
DOWN-REGULATION;
BREAST-CANCER;
CELL-CYCLE;
COLON-CANCER;
BETA;
TRANSCRIPTION;
CRYPTOCHROME;
POLYMORPHISM;
NPAS2;
D O I:
10.1177/1534735409355292
中图分类号:
R73 [肿瘤学];
学科分类号:
100214 ;
摘要:
Period genes (Per2, Per1) are essential circadian clock genes. They also function as negative growth regulators. Per2 mutant mice show de novo and radiation-induced epithelial hyperplasia, tumors, and an abnormal DNA damage response. Human tumors show Period gene mutations or decreased expression. Other murine clock gene mutations are not associated with a tumor prone phenotype. Shift work and nocturnal light exposure are associated with circadian clock disruption and with increased cancer risk. The mechanisms responsible for the connection between the circadian clock and cancer are not well defined. We propose that circadian disruption per se is not uniformly tumor promoting and the mechanisms for tumor promotion by specific circadian clock disturbances will differ dependent upon the genes and pathways involved. We propose that Period clock gene mutations promote tumorigenesis by unique molecular pathways. Per2 and Per1 modulate beta-catenin and cell proliferation in colon and non-colon cancer cells. Per2 mutation increases intestinal beta-catenin levels and colon polyp formation. Per2 mutation also increases Apc(Min/+)-mediated intestinal and colonic polyp formation. Intestinal tumorigenesis per se may also alter clock function as a result of increased beta-catenin destabilizing PER2 protein. Levels and circadian rhythm of PER2 in Apc(Min/+) mouse intestine are markedly decreased, and selective abnormalities in intestinal clock gene and clock-controlled gene expression are seen. We propose that tumor promotion by loss of PERIOD clock proteins is unique to these clock genes as a result of altered beta-catenin signaling and DNA damage response. PERIOD proteins may offer new targets for cancer prevention and control.
引用
收藏
页码:303 / 308
页数:6
相关论文