Asymmetric Colloidal Particles Fabricated by PolymerizationInduced Surface Self-Assembly Approach

被引:23
|
作者
Hou, Wangmeng [1 ,2 ]
Zhong, Wen [1 ,2 ]
Zhao, Hanying [1 ,2 ,3 ]
机构
[1] Nankai Univ, Coll Chem, Tianjin 300071, Peoples R China
[2] Nankai Univ, Key Lab Funct Polymer Mat, Minist Educ, Tianjin 300071, Peoples R China
[3] Nankai Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
LIQUID-LIQUID INTERFACE; ONE-STEP APPROACH; JANUS PARTICLES; GOLD NANOPARTICLES; SILICA PARTICLES; HOLLOW CAPSULES; POLYSTYRENE; SPHERES; MICROSTRUCTURE; NANOSTRUCTURES;
D O I
10.1021/acs.macromol.0c02772
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In the past decades, the synthesis of asymmetric colloidal particles has been of wide concern in material science because of their anisotropic morphologies and unique properties. However, the synthesis of the asymmetric particles with controllable anisotropy still remains a big challenge because of the lack of effective methods. In this research, polymerization-induced surface self-assembly (PISSA) approach was demonstrated to be an effective method in the synthesis of colloidal particles with tunable asymmetric core-shell structures. Reversible addition-fragmentation chain transfer agents were covalently anchored onto the surfaces of silica particles and coupled onto the ends of methoxy polyethylene glycol (PEG) chains, leading to the synthesis of CTA-modified silica particles (SiO2-CTA) and PEG macro-CTA agents (PEG-CTA), respectively. PISSA process was conducted by using SiO2-CTA and PEG-CTA as co-RAFT agents in RAFT dispersion polymerization of styrene. In the RAFT polymerizations, polymer layers with PS nodules were formed on the surfaces of SiO2 particles. It was demonstrated that the formation of the nodules was related to the production of the PS homopolymer in the PISSA process. In order to control the asymmetric surface structures, RAFT dispersion polymerizations of styrene with added "free" RAFT agents were performed, and it turned out that the eccentrically positioned core-shell structures with silica cores and polymer layers were prepared. The colloidal particles experience morphology changes from surface nodules to snowman-like structures and finally to asymmetric spherical structures, depending on the monomer conversion and the feeding ratio of the co-RAFT agents. Kinetics studies were performed to investigate the mechanism of the formation of the asymmetric particles. After etching the silica cores with HF solution, asymmetric hollow capsules were fabricated.
引用
收藏
页码:2617 / 2626
页数:10
相关论文
共 50 条
  • [1] Hierarchical self-assembly of asymmetric amphiphatic spherical colloidal particles
    Miller, William L.
    Cacciuto, Angelo
    PHYSICAL REVIEW E, 2009, 80 (02):
  • [2] Self-Assembly of Colloidal Particles
    Sharma P.
    Resonance, 2018, 23 (3) : 263 - 275
  • [3] Self-assembly of colloidal sulfur particles on hydrophilic surface
    Jason, Naveen N.
    Chaudhuri, Rajib Ghosh
    Paria, Santanu
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [4] Self-assembly of colloidal particles on a patterned surface with wettability
    Lee, Sang-Wook
    Choi, Yoonseuk
    Lee, Sin-Doo
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2007, 475 : 193 - 199
  • [5] Nanostructured thin films by self-assembly of surface modified colloidal particles
    Sastry, M
    CURRENT SCIENCE, 2000, 78 (09): : 1089 - 1097
  • [6] Surface roughness directed self-assembly of patchy particles into colloidal micelles
    Kraft, Daniela J.
    Ni, Ran
    Smallenburg, Frank
    Hermes, Michiel
    Yoon, Kisun
    Weitz, David A.
    van Blaaderen, Alfons
    Groenewold, Jan
    Dijkstra, Marjolein
    Kegel, Willem K.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (27) : 10787 - 10792
  • [7] Patchy colloidal particles for programmed self-assembly
    Duguet, Etienne
    Hubert, Celine
    Chomette, Cyril
    Perro, Adeline
    Ravaine, Serge
    COMPTES RENDUS CHIMIE, 2016, 19 (1-2) : 173 - 182
  • [8] Self-assembly of latex particles for colloidal crystals
    Zhirong Lia
    Particuology, 2011, 9 (06) : 559 - 565
  • [9] Self-assembly scenarios of patchy colloidal particles
    Doppelbauer, Guenther
    Noya, Eva G.
    Bianchi, Emanuela
    Kahl, Gerhard
    SOFT MATTER, 2012, 8 (30) : 7768 - 7772
  • [10] Self-assembly of colloidal particles on different surfaces
    Ulmeanu, M.
    Zamfirescu, M.
    Medianu, R.
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2009, 338 (1-3) : 87 - 92