Equivariant higher Dixmier-Douady theory for circle actions on UHF-algebras

被引:0
作者
Evans, David E. [1 ]
Pennig, Ulrich [1 ]
机构
[1] Cardiff Univ, Sch Math, Senghennydd Rd, Cardiff CF24 4AG, Wales
关键词
Operator algebras; Algebraic topology; Infinite loop spaces; Equivariant automorphisms; Equivariant Brauer group; K-THEORY; AUTOMORPHISM-GROUPS; MODULAR INVARIANTS; HOMOTOPY-GROUPS; LIMITS;
D O I
10.1016/j.aim.2022.108745
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop an equivariant Dixmier-Douady theory for locally trivial bundles of C-*-algebras with fibre D circle times K equipped with a fibrewise T-action, where T denotes the circle group and D = End (V)(circle times infinity) for a T-representation V. In particular, we show that the group of T-equivariant *- automorphisms AutT (D circle times K) is an infinite loop space giving rise to a cohomology theory E-D,T(*) (X). Isomorphism classes of equivariant bundles then form a group with respect to the fibrewise tensor product that is isomorphic to E-D,T(1) (X) similar or equal to [X, BAut(T) (D circle times K)]. We compute this group for tori and compare the case D = C to the equivariant Brauer group for trivial actions on the base space. (c) 2022 The Authors. Published by Elsevier Inc.
引用
收藏
页数:40
相关论文
共 42 条
[1]  
Adams J. F., 1978, Annals of Mathematics Studies, V90
[2]  
[Anonymous], 2010, Quanta of maths
[3]  
[Anonymous], 2004, Ukr. Mat. Visn
[4]  
Ara P., 2003, SPRINGER MG MATH
[5]  
Arlettaz D., 1992, K-THEORY, V6, P347
[6]  
Blackadar B., 1992, K-Theory, V6, P267
[7]  
BRATTELI O, 1972, T AM MATH SOC, V171, P195
[8]   An equivariant Brauer group and actions of groups on C*-algebras [J].
Crocker, D ;
Kumjian, A ;
Raeburn, I ;
Williams, DP .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 146 (01) :151-184
[9]  
Cuntz Joachim, 1987, Contemp. Math., V62, P429, DOI DOI 10.1090/CONM/062/878392
[10]   A Dixmier-Douady theory for strongly self-absorbing C*- algebras [J].
Dadarlat, Marius ;
Pennig, Ulrich .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 718 :153-181