Monomials and binomials over finite fields as R-orthomorphisms

被引:0
|
作者
Chou, WS
Niederreiter, H
机构
[1] Acad Sinica, Inst Math, Taipei 11529, Taiwan
[2] Natl Univ Singapore, Dept Math, Singapore 117543, Singapore
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2002年 / 61卷 / 3-4期
关键词
permutation polynomials; complete mapping polynomials; orthomorphisms;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give criteria for both monomials and binomials of the form ax((q+ 1)/2) + bx to be R-orthomorphisms of the finite field F-q of odd order q. We also prove existence theorems for R-orthomorphisms of this form.
引用
收藏
页码:511 / 521
页数:11
相关论文
共 50 条
  • [21] Nilpotent linearized polynomials over finite fields and applications
    Reis, Lucas
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 50 : 279 - 292
  • [22] Nilpotent linearized polynomials over finite fields, revisited
    Panario, Daniel
    Reis, Lucas
    FINITE FIELDS AND THEIR APPLICATIONS, 2024, 97
  • [23] Permutation polynomials over finite fields providing involutions
    Kevinsam, B.
    Vanchinathan, P.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [24] Some generalized permutation polynomials over finite fields
    Qin, Xiaoer
    Yan, Li
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2021, 64 (01): : 75 - 87
  • [25] EXPLICIT FORMULAS FOR MONOMIAL INVOLUTIONS OVER FINITE FIELDS
    Castro, Francis N.
    Corrada-Bravo, Carlos
    Pacheco-Tallaj, Natalia
    Rubio, Ivelisse
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2017, 11 (02) : 301 - 306
  • [26] Classification of fractional projective permutations over finite fields
    Gologlu, Faruk
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 81
  • [27] Some new results on permutation polynomials over finite fields
    Ma, Jingxue
    Zhang, Tao
    Feng, Tao
    Ge, Gennian
    DESIGNS CODES AND CRYPTOGRAPHY, 2017, 83 (02) : 425 - 443
  • [28] Some new results on permutation polynomials over finite fields
    Jingxue Ma
    Tao Zhang
    Tao Feng
    Gennian Ge
    Designs, Codes and Cryptography, 2017, 83 : 425 - 443
  • [29] On Inverses of Permutation Polynomials of Small Degree Over Finite Fields
    Zheng, Yanbin
    Wang, Qiang
    Wei, Wenhong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (02) : 914 - 922
  • [30] Classification of some quadrinomials over finite fields of odd characteristic
    Ozbudak, Ferruh
    Temur, Burcu Gulmez
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 87