On the cohomology and their torsion of real toric objects

被引:20
作者
Choi, Suyoung [1 ]
Park, Hanchul [2 ]
机构
[1] Ajou Univ, Dept Math, San 5, Suwon 443749, South Korea
[2] Korea Inst Adv Study, Sch Math, 85 Hoegiro Dongdaemun Gu, Seoul 130722, South Korea
基金
新加坡国家研究基金会;
关键词
Real toric manifold; small cover; real topological toric manifold; cohomology ring; odd torsion; nestohedron; CONVEX POLYTOPES; MANIFOLDS; OPERATIONS; QUADRICS;
D O I
10.1515/forum-2016-0025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we do the following two things: (i) We present a formula to compute the rational cohomology ring of a real topological toric manifold, and thus that of a small cover or a real toric manifold, which implies the formula of Suciu and Trevisan. Furthermore, the formula also works for an arbitrary coefficient ring G in which 2 is a unit. (ii) We construct infinitely many real toric manifolds and small covers whose integral cohomology rings have a q-torsion for any positive odd integer q.
引用
收藏
页码:543 / 553
页数:11
相关论文
共 20 条
[1]  
[Anonymous], 1972, INTRO COMPACT TRANSF
[2]   OPERATIONS ON POLYHEDRAL PRODUCTS AND A NEW TOPOLOGICAL CONSTRUCTION OF INFINITE FAMILIES OF TORIC MANIFOLDS [J].
Bahri, A. ;
Bendersky, M. ;
Cohen, F. R. ;
Gitler, S. .
HOMOLOGY HOMOTOPY AND APPLICATIONS, 2015, 17 (02) :137-160
[3]   Real quadrics in Cn, complex manifolds and convex polytopes [J].
Bosio, Frederic ;
Meersseman, Laurent .
ACTA MATHEMATICA, 2006, 197 (01) :53-127
[4]  
Buchstaber V M, 2002, Univ. Lect. Ser., V24
[5]  
Cai L., 2014, PRODUCTS REAL MOMENT
[6]   Homotopy decomposition of a suspended real toric space [J].
Choi S. ;
Kaji S. ;
Theriault S. .
Boletín de la Sociedad Matemática Mexicana, 2017, 23 (1) :153-161
[7]  
Choi S, 2016, TOHOKU MATH J, V68, P91
[8]   A new graph invariant arises in toric topology [J].
Choi, Suyoung ;
Park, Hanchul .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2015, 67 (02) :699-720
[9]  
Danilov V. I., 1978, USPEKHI MAT NAUK, V33, P247, DOI 10.1070/RM1978v033n02ABEH002305
[10]   CONVEX POLYTOPES, COXETER ORBIFOLDS AND TORUS ACTIONS [J].
DAVIS, MW ;
JANUSZKIEWICZ, T .
DUKE MATHEMATICAL JOURNAL, 1991, 62 (02) :417-451